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Abstract

Large deployable space structures require an significant amount of effort to fully

design and test on Earth. The Large Deployable Space Aperture Reflector is one such

structure that is intended to increase ground to orbit satellite communications abilities

by an order of magnitude. To aid in the determination of the feasibility of the reflector,

a method to simulate the structure’s deployment was developed using the COMSOL

simulation software suite. The simulation model is comprised of a locking hinge truss

that constitutes the partial reflector structure. To meet computational and temporal

restrictions, the structure is simplified to use beams with square cross sections and

is meshed to a sufficient accuracy with second order elements. The geometry itself is

modeled in the truss’s stowed configuration, with the connecting hinges and applied

forces created via constraint equations in COMSOL. These equations dictate the

unique behavior of the truss’s radial deployment. Many different simulations were

run with varied design parameters to not only demonstrate the global motion of the

deploying truss under differing conditions, but to also showcase the capabilities of

COMSOL’s implicit solver. It was found through all of the simulation variations that

the success of the truss’s deployment is largely dependent on the orientation of the

lower truss members as well as the interaction between the spring-loaded hinges and

tension cables. Although the results from these simulations are representative of the

simplified truss model, they demonstrate how COMSOL can be used to aid in the

advancement of the Large Deployable Space Aperture Reflector design.
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SIMULATION OF LOCKING SPACE TRUSS DEPLOYMENTS

FOR A LARGE DEPLOYABLE SPARSE APERTURE REFLECTOR

I. Introduction

1.1 Problem Statement

High bandwidth satellite to ground communication requires large antennas to

overcome the signal attenuation experienced over the enormous transmission distance

[9]. Although satellites are limited in power by their solar cells, there exists the

potential to increase the signal gain by using a larger antenna reflector aperture.

However, the use of large reflectors, or any large space structure, is impeded by

the constraints of current launch vehicle technology. The Large Deployable Sparse

Aperture Reflector1 design concept offers a large reflector area that can be stowed

within modern payload fairings [10]. Unfortunately, a 150 meter diameter structure

designed only for space operations would be exceedingly difficult to build and properly

test on Earth [11]. It is instead proposed that computer simulations of the reflector’s

deployment using FEM (Finite Element Methods) can significantly contribute to the

design and future feasibility of the reflector. Additionally, it is suggested that the

methodology created to study the behavior of this reflector’s deployment may also

be extended to other large space structures and therefore make a contribution to this

field of research.

1This deployable structure is detailed in Section 2.1
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1.2 Research Objectives and Focus

The objective of this research is to simulate the deployment of the folding trusses

that constitute the structure of the Large Deployable Sparse Aperture Reflector. The

hinges of the folding trusses employ locking hinges with pre-deformed springs that

must be modeled correctly in order to simulate deployments representative of the en-

visioned design. The simulation model will be strategically altered to test its resilience

when faced with variances in component quality, operation, or structural integrity.

In particular, controlled deployments, uncontrolled deployments, deployments with

centripetal acceleration, and deployments with weak hinge pairs were simulated.

The research will focus on building a methodology that can be used to reliably

simulate the deployment of the folding trusses. The methods used to build the model

were designed to be modular so that in the future they can be easily scaled with

additional truss segments. The research will use the COMSOL Multiphysics software

suite2 to model the deployments with FEM. The numerical methods used to solve for

the dynamic FEA (Finite Element Analysis) in the simulations are used only as tools

and some discussion is given on method selection and adjusting method parameters

in Section 3.5. The analysis of the deployments will concentrate on the envelope in

which the truss deploys as well as the global response of the truss’ deployment to

different types of manufacturing error.

1.3 Assumptions and Limitations

The geometry of the deploying truss is assumed to be perfect as the research intent

is to characterize the system as a whole and not its individual components. From

previous research, geometric deviation resulting from manufacturing error will be

2Although many other finite element software packages have the capability to do large displace-
ment multibody dynamics simulations, COMSOL was chosen due to its sizable physics library and
unique numerical solver methods. The choice of package will be discussed in Section 2.3.
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expected to be on the order of 0.01% [12], making this a very reasonable assumption.

In addition, all constraints placed on geometry (displacements, hinges, forces, etc.)

are adhered to perfectly by the system and are not representative of a real world test.

Real systems would likely have additional flexibility, but modeling the additional

compliance is difficult and very much tied to the actual test setups. The calculations

for the deployment envelope assume that the horizontal and vertical battens remain

rigid throughout the simulation. It is also assumed that the numerical solvers being

used are working as expected and are not introducing any considerable error into the

simulations. Results are visually inspected to gauge divergence or “numeric chatter.”

Commercial software was used and assumed to be verified for proper function, which

proved to be the case.

The COMSOL MultiBody Dynamics package used for the simulations will only

accept solid body geometry. Therefore, only solid finite elements were used. The

equivalent material properties used with the simplified geometry in the simulations

does not correctly represent axially loading and may create spurious results. It is

assumed that bending modes of vibration dominate the model’s predicted response

because truss deployment is largely a function of moments applied to the long, slen-

der beams that comprise the longerons. It should also be noted that the computer

hardware being used for the simulations can only be classified as personal computers,

and therefore do not have the capabilities to run simulations with very fine geometric

detail.

1.4 Methodology

Figure 1 illustrates the methodology of this work. The geometry of the trusses

was constructed and then simplified in SolidWorks. The solid models were imported

in COMSOL where the connecting bodies, joints, and boundary conditions were de-
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clared. The models were meshed using COMSOL’s built-in functionality. The numeri-

cal solver settings in COMSOL were adjusted according to the needs of the simulation,

and probes were placed at important locations on the model to monitor the simu-

lation. Numerous simulations were run to test the model’s compliance with various

disturbances. The results of these simulations were analyzed to identify deployment

behaviors and the truss’s sensitivity to hinge variations. Additionally, conclusions

about the methodology’s effectiveness were made.

1.5 Overview

Chapter 2 presents background information crucial to the understanding of this

work. Here, historical designs of large space structures are introduced, and the design

of the Large Deployable Sparse Aperture Reflector is shown. The challenges of testing

large deployable space structures on Earth are also discussed. Next, the basics of

Finite Element Methods as well as some select element types are explained. The

different methods for solving dynamic Finite Element Analysis problems and the

numerical method that COMSOL uses are then shown. Finally, some concerns about

the computational hardware being used are shared.

Chapter 3 presents the methodology used to create the simulation model that in-

cludes: FEA software selection, solid modeling, model simplification, creating equiv-

alent material properties, explaining the nomenclature being used within the model,

importing the geometry into COMSOL, meshing the geometry, establishing the physics

that define the motion of the model, coding the cables used between the truss mem-

bers, adding probes to monitor the model during the simulation, and configuring the

solver in COMSOL. This chapter ends with a brief mesh study to justify the technique

used to mesh the model, and a word on how the deployment envelope is calculated

in MATLAB. Figure 1 gives a visual representation of this methodology.
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Figure 1. Flowchart illustrating the methodology presented in Chapter 3.

Chapter 4 analyzes the results of the different simulations beginning with the un-

controlled deployment methods, then deployments involving centripetal acceleration,

deployments with weak upper or lower hinge pairs, and finally controlled deployments.

Chapter 5 contains a summary, the conclusions from the analysis and recommenda-

tions for future work.
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II. Background

Chapter 2 introduces the pertinent background information that is related to the

important aspects of this work. First, Section 2.1 offers a brief overview of the his-

toric space structures that inspired the Large Deployable Sparse Aperture Reflector.

Then, the reflector itself and its deployment methods are described in order to fa-

miliarize the reader with its operation. The section wraps up with a quick word on

the challenges of testing space structures in Earth’s gravity. Section 2.2 introduces

FEM to the reader so as to provide a basis of understanding of the mathematical

concepts being used. The fundamentals of FEM are explained, expanded to higher

dimensions, and the importance of proper element interpolation schemes are noted.

Section 2.3 takes the general-purpose finite element methodology and applies it to

structural dynamics. The theories behind the dynamics themselves are first sub-

mitted, and are then followed by two prominent methods of dynamic finite element

computation. All of these concepts culminate in the last part of this section, showing

how they are applied by COMSOL and used for the simulations in this work. Finally,

Section 2.4 covers some computational considerations that play an important part in

any computationally-intensive work such as this.

2.1 Large Deployable Space Structures Design

Filled Aperture Deployment Simulation.

Deployment analyses of filled aperture reflectors have been conducted many times

in the past. The NTT Wireless Systems Laboratory not only simulated the deploy-

ment of an experimental 4.8 meter diameter filled aperture reflector, but also con-

ducted validation experiments with a laboratory prototype [1]. The filled aperture

was comprised of a mesh reflector held by a truss structure stiffened by a network

6



of cables. The authors of the work stressed the importance of simulating the design

with flexible bodies to more properly represent the actual prototype [13] and avoid

losing the inertial forces due to superposition. Through flexible body computer simu-

lations, the drive force required for successful deployment was found. The drive force

was validated through experimental data as well, and it was concluded that “flexible

multibody dynamics can provide a clear and concrete numerical solution and unveil

problems that cannot be or is difficult to be detected by conventional rigid body sim-

ulations.” [1] Figure 2 shows the size and packaging of the filled aperture. Note how

the aperture’s stowage height increases with the diameter of the reflector. Increasing

the diameter of the reflector would require even more height that would have to be

fit into launch vehicle payload fairings.

Martin Marietta Box Truss Development.

In 1978 the Martin Marietta Corporation began work on deployable box truss

cubes to meet Shuttle-transportable large space system requirements [2]. The box

truss cube was comprised of a deployable frame in which the horizontal members were

split by midlink hinges that were folded for stowage. The final shape was controlled

by the tension of diagonal tape running crossing through the square faces of the sides

of the cube (Figure 3).

Some of the advantages of the box truss were its versatility to be used in different

configurations, its efficient stowage of structural members, and its potentially low

cost. The design of a 4.6 meter proof-of-concept cube (Figure 4) was completed in

1980, and a prototype was built and tested the following year. Test results show that

the box truss cube was very efficient, having high stiffness and low weight. Even

better, the box truss cube was accurate to 0.1 millimeters on all axes and endured

through multiple deployments without any structural failures[2].

7



Figure 2. NTT Wireles Systems Laboratory 4.8 meter Filled Aperture Reflector Pro-
totype. From top to bottom: Stowed, Deploying, Deployed. [1].

Further work was done by Martin Marietta to investigate the possibility of creating

parabolic reflectors from multiple box trusses with differing top and bottom member

lengths. Additional designs were envisioned that applied the deploying box truss

idea to many different aspects of space structures. One FEA was performed on a

stowed deployable antenna model in order to see whether or not its fundamental

frequency was high enough to be considered launch capable. Due to the technology

at the time (1982), however, the FEA was very low fidelity: just an eight node cube

with lumped masses on the corners of the central box truss. Kinematic testing of

the deployable box truss used the complete fabrication of prototypes to validate the
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Figure 3. Martin Marietta Deployable Box Truss Design [2].

Figure 4. Martin Marietta Deployable Box Truss Prototype [2]. Left: Stowed box
truss. Right: Deployed box truss.

expected performance. Such tests were conducted in the gravitational environment

of Earth, and could only be correlated to on-orbit behavior.

Able Deployable Articulated Mast (ADAM).

The Shuttle Radar Topography Mission mapped the topography of nearly 80%

of Earth’s land surfaces in February of the year 2000 [3]. The mission required an

outboard antenna to be placed on the end of a rigid boom extending 60 meters
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from the shuttle itself. The ADAM (Able Deployable Articulated Mast) was a truss

structure consisting of 87 cube-shaped truss cells that not only held the outboard

antenna at a precise location, but could also retract back into the shuttle after the

mission.

Figure 5. ADAM deployed from canister in laboratory environment with gravity of-
floading [3].

Today, the design and manufacture of this deployable mast is done by ATK

Aerospace Structures [14]. Unlike the Martin Marietta design, the box truss mem-

bers do not fold themselves. Rather, the members have ball joints on their ends to

allow the specialized corner fittings to fold the members as the box truss is rotated

in a deployment canister. Figure 6 shows a stowed 10 meter ADAM that was used

most recently for the NuSTAR mission in 2012 performed by JPL (Jet Propulsion

Laboratory) and the California Institute of Technology [4]. To date, ATK has flown

11 of these masts and has had a 100% success rate [14].

ATK lists some important advantages of using deployable truss systems for space

operations: high deployment reliability and repeatability, extensive flight heritage,
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Figure 6. NuSTAR ADAM in stowed configuration [4].

validated on-orbit strength and stiffness performance, efficient stowage volume (< 5%

of total length), and a modular design that allows the mast length to be tailored for

specific mission requirements. However, this modularity only extends the length of

the mast and does not allow for additional truss cells in any other direction, unlike the

Martin Marietta concepts. Packaging efficiency is also not great, as Figure 6 shows a

considerable amount of unused space in the deployment canister.

Large Deployable Sparse Aperture Reflector Structural Design.

The Martin Marietta box truss cube showed significant promise. It had great

packaging efficiency, had multi-directional modularity, and was very strong. Unfortu-

nately, further design iterations were hampered by limited resources and applications

for the trusses. Very few prototypes were tested. The ADAM, on the other hand, is a

multi-joint, deployable truss structure with great flight heritage that has been proven

to be a viable solution for creating large structures in space. The thought then, is to
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combine the best aspects of each design into a new large deployable space structure.

Enter the Large Deployable Sparse Aperture Reflector design that is currently being

investigated by the Air Force Institute of Technology (AFIT).

Figure 7. Conceptual side layout view of Large Deployable Sparse Aperture Reflector.
Courtesy of Dr. Gyula Greschik [5].

The Large Deployable Sparse Aperture Reflector concept (Figure 7) was conceived

as a means to recreate the area of a 50 meter diameter filled reflector aperture with a

sparse design that could be stowed into existing payload fairings of approximately 5

meters in diameter. The reflector is intended to be used on a satellite in a geostation-

ary orbit and receives L-Band signals of 1-2 GHz [15]. Much work as been done to

down-select the design [10], increase packaging efficiency [10], calculate its electrical

performance [15], and determine the required manufacturing accuracy requirements

[12]. This work focuses on the deployment of the design chosen as a result of these

previous works.

In essence, the sparse aperture reflector is comprised of four arms which deploy

from a central hub (Figure 8). The arms are made from eight box trusses each,

henceforth known as truss cells, that are shaped into a parabola. The parabola is

created through the use of shaping tension cables on the sides of the cells as well

as unequal length top and bottom members of the truss cells. Additional structural
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Figure 8. Top view of sparse aperture with 150 meter diameter compared to a filled
aperture with 50 meter diameter. Courtesy of Dr. Gyula Greschik [5].

cables reside in the top and bottom faces of the cells as well, and serve to add more

rigidity to the truss cell. The deployment occurs in two stages: a bounded horizontal

opening of the truss cells via a motor in the hub (first stage), and an unbounded radial

expansion along the lengths of the truss cells (second stage). These stages are shown

in Figure 9 which is a more detailed representation of the geometry shown in Figure

8. The first stage of deployment unfolds the “horizontal battens” of the truss cell,

and the second stage of deployment unfolds the “longerons,” or the members that run

the radial length of the truss cell. Both the horizontal battens and the longerons are

split by hinges that lock after 180 degrees of rotation, but only the longeron’s hinges

contain a pre-deformed spring that motivates the radial deployment. The upright

structural members of the truss are known as vertical battens, and are static in their

length. Please refer to Figure 10 for an illustration of these structural members. Once

fully deployed, the entire structure is held in tension by the multitude of cables within

each cell as well as many other cables spanning different arms and the central mast.

The advantages of the Large Deployable Sparse Aperture Reflector concept are

numerous. Through the use of truss cells with tension cables, the reflector will have a

high stiffness to mass ratio similar to the Martin Marietta design. By collapsing
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Figure 9. Top view of sparse aperture deployment stages. Courtesy of Dr. Gyula
Greschik [5].

Figure 10. Nomenclature of truss cells shown during possible radial deployment with
some nominal dimensions. Courtesy of Dr. Gyula Greschik [5].

the truss cells along their horizontal battens and longerons, an entire 150 meter

diameter structure can be packaged into a 5 meter payload fairing. Although the

truss structure is inherently complex, the ADAM’s flight history has shown that

deployable truss structures are a viable design for on orbit operations. Therefore, the

next step in determining the feasibility of the sparse aperture reflector is to explore

the deployment mechanisms at work. Logically, this would involve building scale

models to test the proposed deployment methods.

14



High-Fidelity Gravity Offloading System.

The fabrication and test of proposed designs are critical to the development of

new technologies. Space structures require special consideration because they are

sometimes designed for a weightless environment. Measures need to be taken to

“offload” the structures so that the tests done to them are representative of the

space environment. Unfortunately, “ground tests to explore the zero-g performance

of mechanical systems inevitably employ various compromised solutions” [11]. Such

solutions usually involve hanging the structure so that it does not have to support its

own weight (Figure 5), or free-fall drop tests in which the subject is virtually weightless

for a short amount of time. For kinematic testing, more creative offloading schemes

must be devised so that the motion of the structure remains unimpeded by both

gravity and the offloading hardware itself [16]. Although many viable solutions for

gravity offloading exist and have been proposed, the fact remains that fabricating and

testing the hardware would be time-consuming and expensive. Most likely the design

under review in this work would at first be scaled to test the structure’s deployment

validity. Eventually though, a full-scale test to certify the structure for flight would

have to be conducted, which would require an enormous test facility. Fortunately,

modern computers and certain mathematical methods can be employed to conduct

analysis on large space mechanisms before they ever need to be fabricated. This

allows the designers of such large structures to test and iterate their designs many

times before the expensive full-scale fabrication and testing need to occur.
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2.2 Static Finite Element Methods

Finite Element Analysis.

“FEA (Finite Element Analysis), also called the FEM (Finite Element Method), is

a numerical method to finding the solution to field equations” [7]. The field equations

spatially subdivide the whole domain of a problem into simpler, finite parts. Solving

for the dependent variables present in the field equations in a piece-wise fashion for the

whole domain yields an approximation of the exact solution. The exact solution itself

would almost certainly be impossible to solve for save the simplest of problems. Such

methods are extremely useful for solving complex problems and have applications in

a myriad of scientific fields. In particular, this work explores how FEM can be used

to simulate the deployments of space structures.

The foundation of finite elements lies in the discretization of geometry into “el-

ements.” These elements are connected at points known as “nodes” where the field

equations are applied and the dependent variables solved for. When dealing with

structural analysis, the nodal applications usually involve the material properties of

the geometry being segmented as well as the individual node’s local displacement.

The local displacements are commonly labeled as follows: u (Local X-Displacement),

v (Local Y-Displacement), and w (Local Z-Displacement). Interpolating these prop-

erties and displacements is done along the elements, and can be done with different

polynomial orders. The combination of multiple nodes and elements to describe a

geometry is known as a “mesh”. Figure 11 shows a simple 2D beam mesh in which

the three nodes are free to rotate and translate vertically, and are connected by two

elements.

Mathematically, the static finite element problem is represented as a system of

equations: [K] {D} = {R}. Here, the matrix [K] is the assemblage of the elements’

stiffnesses that are derived from the material properties of the geometry in question.
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Figure 11. Simple 2D beam mesh comprised of two elements.

When two elements share a node, the overlapping sections of the [K] matrices are

merely added together. The vector {D} represents the nodal displacements. The

other vector {R} contains the forces applied to the geometry (F (Force)). Shown in

Equations 1 and 2, solving for the displacements that result from the applied forces

is a matter of multiplying {R} by the inverse of [K]. From there, the displacements

of the nodes can be solved for using linear algebra. In order to constrain the prob-

lem, boundary conditions are applied throughout these systems of equations. When

solving, the [K] matrix is partitioned for the unconstrained parted and inverted to

solve for the displacements. Equation 1 shows the initial systems of equations used

for the beam shown in Figure 11.



−F1

−M1

F2

0

0

0



=



12EIz
L3

6EIz
L2

−12EIz
L3

6EIz
L2 0 0

6EIz
L2

4EIz
L

−6EIz
L2

2EIz
L

0 0

−12EIz
L3

−6EIz
L2

12EIz
L3 + 12EIz

L3
−6EIz
L2 + −6EIz

L2
−12EIz
L3

6EIz
L2

6EIz
L2

2EIz
L

−6EIz
L2 + −6EIz

L2
4EIz
L

+ 4EIz
L

−6EIz
L2

2EIz
L

0 0 −12EIz
L3

−6EIz
L2

12EIz
L3

−6EIz
L2

0 0 6EIz
L2

2EIz
L

−6EIz
L2

4EIz
L





0

0

v2

θz2

v3

θz3


(1)

Here, E (Youngs’s Modulus) is stiffness of the material in Newtons per square

meter, Iz (Area Moment of Inertia) relates the cross-sectional geometry of the beam

in quartic meters, and L (Length) is the elemental length in meters.
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After applying the boundary conditions, the rows and columns of the DOF (De-

grees of Freedom) that were constrained are removed. Then, the forces vector is

multiplied by the inverse of the stiffness matrix to solve for the displacements and

create a solution for the problem.
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COMSOL 3D Elements.

The formulation of the beam elements used in Equation 1 is just one of a great

many that can be used to describe a 1D beam geometry in 2D space. When moving

to 2- or 3D geometries, elements become a sort of combination of beam elements that

help describe the added dimensions. In this work, 3D elements are used in order

to properly discretize the 3D geometry. The particular elements under review here

are Lagrangian tetrahedral (4-sided polygon) and Lagrangian hexahedral (6-sided

polygon) elements that are used in COMSOL [17].

Figure 12. Left: Linear tetrahedral element. Right: Quadratic tetrahedral element. [6]
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By default, COMSOL meshes geometries with tetrahedrons. Tetrahedrons are

useful for meshing because almost any geometry can be approximated to arbitrary

precision with a sufficiently dense tetrahedral mesh. COMSOL even features an

‘adaptive meshing” tool that will coarsen or refine a meshduring a simulation in

response to certain convergence criteria at every time step. Figure 12 shows both

a linear tetrahedral element as well as a quadratic tetrahedral element1 The linear

tetrahedral element has 4 nodes, and the quadratic tetrahedral element has 10 nodes.

With 3 DOF per node, this gives the linear element 12 DOF and the quadratic element

30 DOF.

Figure 13. Left: Linear hexahedral element. Right: Quadratic hexahedral element. [6]

Although tetrahedrons can be used for many geometries, they are not always the

most efficient method for meshing. For certain geometries, especially certain simpli-

fied 3D trusses, hexahedrons are more effective. In COMSOL, hexahedrons require

extra effort from the engineer since they are not automatically meshed. Fortunately,

the mesh process is quite swift. Figure 13 shows both a linear hexahedral element as

well as a quadratic hexahedral element. The linear element has 8 nodes and 24 DOF

(3 DOF per node). The quadratic element has 20 nodes and 60 DOF (3 DOF per

node).

1The use of the terms ‘linear” and ‘quadratic” are elaborated in the following section.
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Element Interpolation.

An important aspect of finite elements is the interpolation between the nodes of the

mesh. The formulations for the interpolation methods are numerous, and stem from

the “shape function” on which they are based. These shape functions are generally

classified by the order of interpolation they can provide between the major nodes.

For instance, a first order element can only interpolate linearly between two nodes. A

second order element places a secondary node between two primary nodes, and thus

allows for quadratic interpolation. In most cases, adding in these extra nodes allows

the element to approximate the “true” solution even better. As a consequence, the

total DOF of a mesh of quadratic elements will have a sizable increase. The system

stiffness matrix [K] will also be more densely populated. Both of these factors will

greatly penalize the simulation times. However, the mesh resolution could also be

lowered when using quadratic elements and reduce the size of the stiffness matrix

and the simulation time. At the end of the day, it is up to engineer to decide how to

balance the element order and mesh density when building a FEM model.

Figure 14. Left: Deformation mode of a rectangular block of material in pure bending.
Right: Deformation mode of the Q4 element under bending load. [7]

Figure 14 is a simplified 2D case of when a higher order element is needed. The

Q4 (Four-node Bilinear Rectangle Element) on the right cannot exhibit pure bend-

ing. “When bent, it displays shear strain as well as the expected bending strain.
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This parasitic shear absorbs strain energy, so that if a given bending deformation is

prescribed, the bending moment needed to produce it is larger than the correct value.

In other words, the Q4 element exhibits shear locking behavior” [7]. In short, the

use of linear elements such as the Q4 in a mesh under a bending load will cause the

stiffness of the mesh to be egregiously high. This elemental defect can be overcome

through the use of a higher order element. In this case, a Q8 (Eight-node Quadratic

Rectangle Element) with mid-side nodes would enable the sides of the element to

form a curve and correctly transfer the bending moment through the entire mesh.

This logic can be applied to 3D elements and meshes, such as the elements described

in the previous section.

2.3 Dynamic Finite Element Methods

Theory.

Many methods for structural dynamics were developed before the advent of FEM

for use on structures and so the calculation methods are largely independent. Today,

however, many methods have been tailored to fit the discretization of FEM models.

These methods not only use the same stiffness matrix found in static FEM, but also

require mass and damping matrices. Together, the matrices can be applied to the

solve for Newton’s second law as seen in Equation 3 [7].

f = ma⇒ r − ku− cu̇ = mü⇒ mü+ cu̇+ ku = r (3)

where m (Mass), r (Forcing Function), a (Acceleration), k (Stiffness Constant), c

(Damping Constant), u̇ (Velocity), and ü (Acceleration). Note that the resulting

force of the spring ku may be called an internal force [7].

From this equation and some FE theory, the global form of Newton’s second law
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for FEA can be written as Equation 4 or Equation 5 [7].

[M ] {D̈}+ [C] {Ḋ}+ {Rint} = {Rext} (4)

[M ] {D̈}+ [C] {Ḋ}+ [K] {D} = {Rext} (5)

where the capital letters indicate the matrix or vector form of their lower case coun-

terparts to show that these are discretized sample locations. Also note that matrices

are represented by brackets and vectors are represented by braces.

Explicit and Implicit Integration Methods.

There are two basic methods of integration used to solve these equations: explicit

and implicit. Both have their own advantages and disadvantages, but the main goal

of these methods is to solve for the displacement {D} of the system for one time step.

Explicit direct integration is a conditionally stable form of numerical integration

that requires both the knowledge of the past and present to compute the solution to

the future. It is best suited towards “wave propagation” type problems. The stability

of this method hinges upon the time step chosen, which is a function of the structure’s

mass and stiffness. Usually, the time step chosen must be very small to yield a stable

result, meaning that the solutions found with this method are often very exact at the

cost of a high amount of time steps needed. Thankfully these steps are usually cheap

in terms of computation time because the matrices are diagonal. Shown here as an

example is the “Half-Step Central Difference” method in Equation 6.

1

∆t2
[M ] {D}n+1 =

{
Rext

}
n
−
{
Rint

}
n
+

[
2

∆t2
M − 1

∆t
C

]
{D}n−

[
1

∆t2
M − 1

∆t
C

]
{D}n−1

(6)
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The time step (∆t (Time Step)) is limited by the resonance of the highest fre-

quency component, which generally corresponds to the smaller elements used for

detailing the structure. For highly detailed structures, it becomes quite difficult to

find a stable time step with explicit methods. It is therefore more advantageous to

use implicit methods whose accuracy, not stability, depend on the time step used.

Implicit methods only require knowledge of the present to compute the solution to

the future. This allows most methods to be unconditionally stable and is more useful

for structural dynamics. The biggest downside to this possible unconditional stability

is the amount of computation it takes to solve for the non-diagonal matrices in the

problem. For this particular example, the numerically stable Newmark Method is

used and is shown in Equation 7.

[Keff ] {D}n+1 =
{
Rext

}
n+1

+[M ]

{
1

β∆t2
{D}n +

1

β∆t

{
Ḋ
}
n

+

(
1

2β
− 1

){
D̈
}
n

}
+ [C]

{
γ

β∆t
{D}n +

(
γ

β
− 1

){
Ḋ
}
n

+

(
γ

2β
− 1

){
D̈
}
n

}
(7)

Where γ (Gamma) and β (Beta) are numerical factors that control characteris-

tics of the Newmark Method such as accuracy, numerical stability, and algorithmic

damping.

Previous work [8] with these methods show systems that can be precisely charac-

terized are best represented with explicit methods. However, for systems that cannot

be fully characterized, only the implicit methods yield converging2 results easily.

As an example, take a cantilevered beam similar to that of the problem detailed in

Figure 11 with an impulsive load is applied along its length at the free end. Figure 15

shows how the stress in the middle of the beam increases as a stress wave propagates

2Convergence here meaning that the algorithm is stable enough to find a solution within set
tolerances.
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through it3. The explicit results are more intuitively representative of the stress wave

propagation while the implicit results are filled with noise. Yet, these explicit results

are gained from a precisely calibrated time step. Figure 16 shows what happens if

this time step is altered by just one nanosecond. The COMSOL results shown are

different dimensional representations of the same beam that were run for the sake

of comparison. Plainly, this kind of instability is not conducive for a system more

complex than the simple cantilevered beam shown here. It is for this reason that

the implicit solvers4 within COMSOL were chosen to compute the solution to the

deploying trusses in which the final solution is relatively unknown. Figure 17 shows

that COMSOL’s implicit solver fares very well in various dimensions against the

aforementioned numerical methods and thus validates COMSOL’s implicit solver for

this scenario.

Figure 15. Axially-loaded cantilevered beam: explicit vs. implicit methods. [8]

3Note that the simulation time is only for 0.3 milliseconds in order to view the stress wave’s
propagation.

4The implicit solver used in COMSOL is described in detail in Section 2.3.
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Figure 16. Axially-loaded cantilevered beam: explicit method deviation due to time
step variance. [8]

Figure 17. Axially-loaded cantilevered beam: COMSOL vs. explicit and implicit meth-
ods. [8]
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Dynamic FEA Software Solvers.

COMSOL Backward Differentiation Formula Solver.

COMSOL contains an abundance of time dependent solvers that the user can

choose from, both explicit and implicit in nature[18]. As mentioned in the previous

section, it was decided to forgo the use of an explicit solver due to the instability when

solving problems with large unknowns. Of all the implicit solver choices, the BDF

(Backwards Differentiation Forumula) solver was chosen in COMSOL because it of-

fers the most stability when solving these unconstrained simulations. The BDF solver

in COMSOL uses the IDA package from SUNDIALS (SUite of Nonlinear and DIffer-

ential/ALgebraic equation Solvers). IDA was developed by the Lawrence Livermore

National Laboratory and is essentially a differential algebraic equation solver that

uses variable-order, variable-step-size backward differentiation formulas[19]. In short,

the IDA package allows the solver to adjust the time step of the simulation in response

to the system gradient. This allows the user capture high frequency events without

having to use a very high time frequency throughout the entirety of the simulation,

which significantly reduces computational overhead. The proper understanding of

how the solver achieves this requires a brief description of how it works.

First, the solver initializes all of the system matrices, recognizes all of the physics

that were applied to the model, and determines the total number of system DOF.

Once these matrices are assembled, “the solver breaks down the problem - linear

or nonlinear - into one or several linear systems of equations by approximating the

given problem with a linearized problem” [18]. From here, “a nonlinear solver is used

to update the variables [in the matrices] at each time step” [18]. If the nonlinear

solver’s solution contains more error than what was specified in the settings, then

the Jacobian5 is updated and the variables are again updated at a smaller time

5The Jacobian matrix, or stiffness martix, is the coefficient matrix of the discretized linearized
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step6. Error is usually a result of the system becoming more dynamic through high

acceleration and usually correlates to high stress events. The iterations continue until

the error is small enough to satisfy the settings, and then the step is written out for

that time interval. The iterative method also works in reverse: if the nonlinear solver’s

solution has very small error, then the solver will strive to increase the time step to

its maximum allowable amount in order to speed up the total computation time.

To illustrate this point, Figure 18 shows the longeron stresses at the top and time

step reciprocal at the bottom from an early two cell truss deployment simulation.

Note that both plots are matched up despite their different X axes. Following the

annotations present in the figure: Event 1 marks the start of the deployment when

the spring-hinges applied their moment to the longerons. Although the stress is not

high here, a lot of rapid acceleration occurs as the applied moments begin to move

the truss cells. After the mechanism “settles” to a steady state, the time steps return

to the default level of 0.01 seconds. Event 2 marks the locking hinges for the first

truss cell to fully deploy. The first peak is the upper longerons and the second peak is

the lower longerons. Note that the spikes in time steps cover a period of time before

and after the locking occurs. Smaller time steps are needed here because the system

is rapidly changing as the longerons accelerate towards their peak velocity. After the

locking event, the time steps remain small for a time while the stress is dissipated.

Event 3 marks the locking event in the second trusses lower longerons. The upper

longerons failed to deploy before the simulation ended. Again, the time steps needed

to capture the stress event are small, yet they are allowed to become larger once the

system reaches a steadier state and the stress waves dissipate below the tolerances

set.

problem. Although it does not necessarily have to be updated for every iteration, the problem is
quicker to converge if it is.

6COMSOL is also wont to try a higher order approximation here to gain more accurate results,
however this occurs much more infrequently.
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Figure 18. Top: Longeron stresses during two truss deployment simulation with respect
to time. Bottom: Reciprocal of the time steps used during the simulation with respect
to time steps.
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Figure 19. Example of the reciprocal time steps during a simulation for a poorly made
model.

On a final note, it should be mentioned that the reciprocal time step plot is also

very useful in determining the health of an ongoing simulation. All too often a model

will not be set up correctly or is meshed poorly and the time steps needed for a

converged solution become quite microscopic. Figure 19 is an example of a model

that is not stable during certain movements of its deployment. By reviewing the

results from this simulation during the instances where a time step of 1 picosecond

was needed, one can attempt to “debug” the model. Many times spikes such as these

are indicative of an error in the modeling, but some times the model may need to be

adjusted by adding damping or loosening some of its constraints.

2.4 Computational Hardware Concerns

Throughout the course of developing this work - configuring models, creating

meshes, testing solver settings, etc - it became apparent that the computer hardware

being used would significantly affect the pace of the work being done for this thesis.

As the models became larger with added complexity, not only would a more powerful

computer enable the simulations to finish sooner, but the user would be able to
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iterate upon the design at a faster pace if multiple instances of COMSOL could be

used simultaneously. It then became a secondary objective to explore some different

hardware options to potentially improve this work’s throughput. COMSOL itself has

many suggestions to improve simulation performance with hardware [20], chief among

them is the memory bandwidth. As most of COMSOL’s solver algorithms are multi-

threaded and can be spread around to available processor cores, the amount and speed

of the memory channels feeding into the cores is of utmost importance. In this way

the computer can assemble the system matrices in memory, shuttle the information

to the processor for computation, and then read the computed information back into

memory, as fast as possible. In addition to COMSOL’s suggestions, there exists a

plethora of anecdotal information of other user’s experiences online. Many users

found that increased processor clock speed as well as server-grade hardware (multiple

processors) considerably reduced simulation time. Table 1 offers some anecdotal

information encountered during the development of this work.

Table 1. Computer Simulation Benchmark

Computer Desktop Laptop
Processor Quad Core 4.2 Ghz Quad Core 2.3 Ghz
Memory 16 GB @ 2133 MHz 8 GB @ 1600 MHz

Memory Channels 4 2
Peak Processor Temperature 47◦C 86◦C

Simulation Time (1 Cell) 21m 41s 28m 48s
Simulation Time (4 Cells) 4hr 17m 28s 5hr 49m 30s

The first computer that was used in the early stages of this work’s development was

the laptop. For a laptop, it is very powerful and features a quad core processor and

workstation graphics card. However, the memory provided little overhead for bigger

simulations and its cooling system did not cope well with the processor’s thermal

load. The simulation time for a single cell truss deployment was respectable, but for

a four cell truss the laptop would have to push itself for almost six straight hours.
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For the sake of comparison, the same simulations were run on a desktop computer.

The desktop has a newer quad core processor that is overclocked and has twice the

available memory channels as the laptop. More importantly, the desktop’s memory is

25% faster than that of the laptop, enabling the both simulations to run approximately

25% faster. Although this direct correlation is dubious, it cannot be denied that

running a four cell truss simulation in 4 hours, 17 minutes is much better than 5

hours and 49 minutes. For larger simulations, the time differences will most likely

scale so that a simulation that might take four days could be instead accomplished in

three. Not to mention the additional memory overhead of the desktop allows the user

to run multiple instances of COMSOL simultaneously and at much safer processor

temperatures.

A 25% increase is a good gain from moving from the laptop to the desktop,

but one could posit that the increased speeds gained from the desktop should be

even greater. After all, the desktop has twice the number of memory channels and

almost twice the processor clock speed. There are two specific factors that refute

this conjecture. First, while the simulations still take a considerable amount of time,

they are still considered small with “only” 20,000 DOF. The benefits of more memory

bandwidth and higher clock speed may not be apparent until the model’s matrices

are big enough to take advantage of it. Second, the specific solver being used here

may not be completely optimized for parallelization. Amdahl’s Law states that the

expected improvement of a parallel computing system is a function of the percentage

of parallelized threads [21]. Meaning that if a portion of an algorithm is serialized,

then the minimum execution time of the algorithm cannot be less than that of the

serial process. Therefore, COMSOL’s partially parallelized algorithms will not be

sped up as a function of cores added and is instead at the mercy of the slowest serial

process.
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2.5 Summary

Section 2.1 started by showing an overview of the work done on the Martin Ma-

rietta deployable space truss and ATK’s ADAM. These subsections show that while

the deployable space truss was ingenious, the lack of available applications at the

time prevented it from being iterated further. ATK’s ADAM proved that large de-

ployable space trusses with a multitude of joints can indeed be successful in space,

but that perhaps more efficient packaging could enable even larger space structures.

The next subsection explained how the Large Deployable Sparse Aperture Reflector

borrowed some of the best ideas from the aforementioned historical works, and put

them to use to design a new breed of antenna reflector. The final subsection here

then briefly talked about the challenges of testing space structures on Earth, and how

testing the designs computationally is a viable, cost-effective alternative to the classic

design-fabricate-test-review cycle. Section 2.2 first covered the basics of the Finite

Element Method through the use of a simple example. These basics were then pushed

further to show how FEM can be used to solve for different 3D geometries with dif-

ferent types of elements. It then stressed the importance of higher order elements

and how the can more accurately describe the behavior of structures under bending

loads. Section 2.3 showed how explicit and implicit methods can be applied to solve

dynamic FEA problems. It was stated that although explicit methods are the most

accurate, they require a system characterization that could not be properly made

from the relatively unknown deployment of the locking space trusses. The section

finished by describing the techniques being used by COMSOL to solve its simulations

implicitly. COMSOL’s method of varying the solver’s time step in response to system

gradients was also outlined with an accompanying example simulation. Finally, some

computation considerations were voiced to show how different hardware affects the

simulation time. It was found that for these simulations, the main contributor to
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reduce simulation time was most likely the computer’s memory speed. A note was

also made to state that computer hardware scaling is not trivial, and is extremely

reliant on the parallelization of the software code.
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III. Methodology

Chapter 3 explains the methodology used to simulate the truss deployment of the

Large Deployable Sparse Aperture Reflector concept described in the previous chap-

ter. It begins in Section 3.1 which details why COMSOL was the FEA software of

choice for this work. Next, Section 3.2 illustrates the 3D modeling of the trusses in

Solidworks to show how the trusses are stowed and deployed. This geometry is simpli-

fied in the following section so that the simulations can focus more on the deployment

behavior and less on the individual components that constitute the structure. Due

to the simplification, the as-designed material properties are adjusted in Section 3.3.

Section 3.4 then introduces the nomenclature that was created as a shorthand and

is used to called out the different aspects of the model throughout this work. After

this preparation, the model is imported into COMSOL in Section 3.5. Here the entire

process of composing the simulation in COMSOL is detailed from importing the ge-

ometry to entering the correct solver settings. Subsection 3.5 is of particular interest

and describes the method in which the cable “elements” were created. Section 3.6

explains how a meshing study was done in COMSOL to determine the most efficient

meshing strategy for the simulations. The study aims to create a mesh that is both

accurate and computationally inexpensive. Section 3.7 is the final section in Chapter

3 and describes how the deployment envelope of the simulation can be calculated

from the results of COMSOL in MATLAB.

3.1 FEA Software Selection

One of the first steps in this work was to select the FEA software package that

would run the truss deployment simulations. Five different commercial packages

were vetted in order to determine their capabilities, specifically their ability to model
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multibody dynamics. It was also important that these packages be able to use flex-

ible bodies, handle large amounts of data, and have in-depth documentation. The

following subsections briefly discuss the different packages that were explored, and

why they were not chosen over COMSOL.

FEMAP.

FEMAP (Finite Element Modeling And Postprocessing) is a FEA program that

excels at static FEA problems. It is extremely configurable, and allows the user to

change almost every aspect of the model. Unfortunately, FEMAP is not built for

multibody dynamics, and is generally used only to create the meshes for multibody

dynamic simulations. To run these simulations, the meshes would have to be imported

into a partnered program such as MSC ADAMS.

MSC ADAMS.

ADAMS (Automated Dynamic Analysis of Mechanical Systems) is a software

package that excels at multibody dynamics simulations. In general, ADAMS is an

industry standard package that can provide high fidelity simulations of mechanical

mechanisms. It accepts many different types of meshes and can even use beam ele-

ments in place of solid bodies, unlike COMSOL. However, the types of motions that

would be expected for the deploying truss did not align very well with the ADAMS’

toolkit. Through testing done with an educational version of ADAMS, it was found

that the motion constraints of a simulation are largely predicated on the geometry

being used. For a locking hinge truss, it appeared as though the geometry would

have to be built to physically stop and lock the hinges. This was not optimal for

simulations that were being run to explore the global deployment of a large structure.

Additionally, ADAMS did not seem to have much control over the meshes, and would
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rely on a secondary software package. This would not be ideal if the mesh needed

to be iterated quickly. Therefore it was decided that although ADAMS would most

likely be a fit for this work, it might take a large amount of effort to properly model

the locking truss.

Abaqus.

Abaqus was the software of choice used in the second Finite Elements course at

AFIT. Throughout this course it was shown that Abaqus allows the user a great

amount of control over the model, and that accurate results could be had with the

large library of elements available. In fact, Abaqus is very popular with major auto

manufacturers, who use it to simulate crash tests. However, during conversations

with faculty at AFIT who were extremely familiar with Abaqus, it was decided that

Abaqus would not be a good fit for simulating the deploying truss. It was advised

that a large amount of work would needed in a supporting program such as MATLAB

in order to properly model relative motion inside of Abaqus. It was suggested that it

would be wiser to seek another FEA program for the deployment simulations.

Recurdyn.

Recrdyn is a relatively new FEA program that offers a promising multibody dy-

namics package. It is currently being used extensively by Asian automotive manu-

facturers and even includes special tool kits for automotive simulations. It is also

listed as a complementary software to ANSYS [22], which is a FEA program with

great heritage. A full version of the software was obtained and tested. The user

interface for Recurdyn was simply laid out and easy to understand. It allowed the

user to easily build rigid 3D models, declare joints between bodies, and plot results

very quickly. However, the software still had some of the same issues as ADAMS. It
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was geared towards finalized geometries, had very little control over the meshes, and

custom functions would have to be built to create the appropriate mechanisms for

locking the trusses. Despite these issues, Recurdyn was used to create an extended

abstract on locking hinge truss deployments for the 2015 AIAA SciTech conference.

This extended abstract precedes the conference paper, which in turn precedes this

very thesis. Through this process it was discovered that although Recurdyn models

simplified rigid bodies very well, custom locking parameters had to be created to

in order to stop the bodies without geometry. Before continuing the work for the

conference paper, it was decided to explore another FEA program.

COMSOL.

COMSOL multiphysics is a FEA program that is built for simulations that in-

volve multiple physical interactions, such as a beam under bending and heating. At

first, one of the main attractions to COMSOL was its multibody dynamics package

that includes a large library of physics to create mechanisms. Importantly, spring,

dampers and locking attributes could be added to hinges which is not a convenient

task in ADAMS or Recurdyn. It was found that these hinges could be created quite

easily between faces of simplified geometries as well and did not require fully-realized

designs. Once COMSOL’s variable step solver was investigated and shown to save

valuable computation time, the decision to use COMSOL was almost certain. Unfor-

tunately, COMSOL’s multibody dynamics package used to simulate relative motions

demands the use of solid bodies to declare relationships between geometries. This

meant that the simulation sizes would be much larger than a FEA package that could

solve dynamics with simple beam elements. However, this drawback was accepted

because of all the choices, COMSOL appeared to offer the path of least resistance to

creating a locking truss simulation.
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3.2 Geometry Modeling

3D Geometry Modeling.

The 3D geometry was created from 2D drawings from the work previously done

to design the truss [10]. The dimensions listed in the work were followed as closely as

possible. However, some dimensions have yet to be determined for the truss cells and

had to be estimated in order to create a reasonable representation of the geometry.

All modeling was done in Solidworks, which was chosen because of its availability and

familiarity to the author. Figure 20 illustrates how the 2D drawings were interpreted

to create the 3D geometry.

Figure 20. Left: 2D upper end fitting drawing (Courtesy of Dr. Gyula Greschik).
Right: 3D upper end fitting model (angled view).

The ends of the longerons and battens were also modeled using the 2D drawings.

The hinges that split the longerons and horizontal battens have not yet been designed,

and are therefore omitted from the 3D models. Instead the longerons and horizontal

battens are spaced in order to allow for future design additions, and these spaces
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along with the lengths of the members adhere to the nominal dimensions of the truss

cell. Figure 21 shows the stowed configuration of the truss cell and Figure 22 shows

the deployed configuration of the truss cell. Note that the view shown is of a nominal

“straight” cell, whereas the cells comprising the reflector are trapezoidal to create a

parabolic shape.

Figure 21. Left: Top view of 2D stowed configuration (Courtesy of Dr. Gyula
Greschik). Right: Angled top view of 3D stowed configuration with some transparency.

Figure 22. Angled view of 3D deployed truss cell.

The nominal material properties of the as-designed geometry are shown in Table

2. Note that only one truss cell was modeled in this manner, and that additional
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Table 2. Truss Member Material Properties

Young’s Modulus 70 GPa
Coefficient of Thermal Expansion 7.4 mm/(m×K)
Density 1600 kg/m3

Truss Diameter 51 mm
Truss Wall Thickness 0.635 mm
Cable Diameter 3 mm
Cable Tension 10 N

truss cells would be added serially along the longeron direction. Each truss cell would

also be made from longerons of differing lengths top and bottom, varying cell to cell,

in order to create the final parabolic shape of the reflector.

3D Model Simplification.

As previously mentioned, the nominal geometries shown in the previous section

have not yet been finalized, and so it was decided that the geometry be simplified.

This not only allows for the simulations to focus more on the global deployment

of the trusses, but also considerably reduces the computational burden by requiring

less elements in the model to properly describe the geometry. Shown in Figure 23,

the 3D model was simplified into hexahedrons, which enables the geometry to be

discretized by either hexahedral or tetrahedral elements. The simplified geometry

was only modeled in the stowed configuration with the horizontal battens represented

as a solid member. This not only simplifies the model further, but also helps focus

the simulation on the second radial deployment.

Care was taken during the simplification process to make the simplified model very

easy to work with in COMSOL. The end fittings of the simplified geometry are shrunk

into blocks that allow for accessible hinge declarations on their edges. Consequently,

this also increases the visibility of the partially hidden lower longerons. Attached

to the back of each end fitting is a solid “bumper” that allows for contact to be
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Figure 23. Left: As-designed geometry. Right: Simplified geometry with some trans-
parency.

made between adjacent end fittings so that the geometry does not intersect during

the simulation1. The as-designed outer diameter of the longerons and battens is 51

millimeters and is designed so that there is very little gap between the longerons of

adjacent truss cells. The simplified geometry has a square cross section with an edge

length of 50 millimeters, to allow for more separation of the hexahedral boundaries

as well as reducing the chance of geometry intersection. Every truss cell was created

in its own SolidWorks assembly with an offset of its location in space relative to the

other truss cells when stowed. To create the reflector arm, these assemblies are merely

added together in a master Solidworks assembly. This modular approach allows the

simulations to be scaled by number of truss cells, and proves to be a boon when

1During the development of this methodology it was found that multiple cell simulations would
cause the end fittings to intersect as one would be “kicked back” into another. Contact pairs adds a
force between the selected faces when they reach a predetermined spacing and were created on the
bumpers to keep the end fittings and battens from intersecting.
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investigating these deployment simulations in COMSOL. The entire simplified truss

is shown in Figure 24.

Figure 24. Simplified geometry of stowed four cell truss.

3.3 Equivalent Material Properties

Due to the simplification of the geometry, the material properties of the solid

hexahedrons were adjusted so that they behaved as the as-designed carbon fiber

tubes. This was simply done by using the geometric properties of the hexahedrons

and carbon fiber tubes in Equations 8 and 9 to create an equivalent Young’s Modulus

(E) and density (ρ).
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Eadjusted =
EcarbonfiberItube

Iblock
(8)

ρadjusted =
ρcarbonfiberVtube

Vblock
(9)

Where E (Young’s Modulus), I (Second moment of area), ρ (Density), and V

(Volume).

These new values were then validated using Equations 10 and 11 [23][24]. The

validation equations were used with the parameters of a slender, simply supported

beam (Figure 25) that is analogous to a fully extended longeron.

Figure 25. Simply supported beam validation problem setup.

δmax =
Pl3

48EI
(10)

ωn =
1

2π

(nπ
l

)2√EI

ρA
(11)

Where P (Applied load), l (Length of beam), n (Natural frequency integer), and

A (Cross-sectional area).

Table 3 shows that the material properties of the carbon fiber tubes are carried

over exactly to those of the solid hexahedrons. However, it should be noted that this

conversion only works for bending modes of the longerons and is not valid for axial

loads. It will be shown later in this work that the members making up the truss cell

experience almost all bending loads during deployment, and that this equivalency is
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Table 3. Adjusted material values: Constants and dependent values

Carbon Fiber Tube Adjusted Solid Block
Second Moment Area of Inertia (I) 2.5973× 10−7 m 5.2083× 10−7 m

Young’s Modulus (E) 70 GPa 34.892 GPa
Density (ρ) 1600 kg/m3 32.3543 kg/m3

Max Displacement (δmax) 0.0982 m 0.0982 m
1st Natural Frequency (ω1) 8.2517 Hz 8.2517 Hz

acceptable.

3.4 Modeling Nomenclature

A naming convention scheme was created in order to keep track of the various

hinges and forces within the COMSOL model as a shorthand code. Although this

system reduces clutter within the model, it does require some explanation. First

of all, it should be understood that the model is centered in space with the origin

in the center of square made from the end fittings, horizontal battens, and vertical

battens (Figure 26). In particular the vertical battens lie along Y direction while the

horizontal battens lie along X direction. The shorthand for the corners of the truss

cells is to merely state the positive or negative X and Y locations of the corner. For

example, “pxpy” indicates the positive X, positive Y corner of the truss cell. As the

longerons deploy outwards from the base square at Z = 0, they travel in the positive

Z-direction. This base square is known as the zeroth cell, represents the base of the

truss arm, and is a stationary reference frame. Moving in the positive Z-direction

from here, the truss cells are numbered 1, 2, 3, and 4, with the 4th truss cell being

the furthest out.

The joints within the cells are labeled according to their connections and spatial

position in the deployed truss state. Moving in the positive Z-direction, the joints

connecting the longerons to the frame square (and their shorthand) are: frame-to-

longeron (frlg), longeron-to-longeron (lglg), longeron-frame (lgfr). Therefore, a callout
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Figure 26. Left: Spatial positioning of four cell truss. Right: Order of truss cell squares.

in the results for “c3.nxpy.lgfr” indicates the joint connecting the longeron member

to the square frame in truss cell 3 on the corner of negative X and positive Y. The

variable being viewed appends all of the nomenclature in the results section of this

paper. Meaning that “c2.pxny.lglg.Ms” is the Mapplied (Applied Spring-Moment) of

the longeron-to-longeron joint located in the positive X, negative Y corner. As a

special case, the cables follow these basic principles, and can be located in the model

by noticing last capitalized characters: “c1.NXnypy” signifies the cable that lies on

the negative X face that travels from (in the positive Z direction) the negative Y

corner to positive Y corner of the truss cell. Figure 27 shows a visual example of the

nomenclature applied to a truss cell and Figure 28 can be used as a reference guide

when viewing the results.

3.5 COMSOL Simulation Setup

The section presented here outlines a ”best practice” work flow for setting up

simulations in COMSOL. It is intended to show the advantages and disadvantages of
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Figure 27. Truss cell 1 deployment at 7 seconds with hinge and cable callouts.

using COMSOL for multibody dynamic simulations. The methodology begins with

geometry import and conditioning, then moves through meshing, material properties

application, physics setup, cable modeling, probe creation, and finally solver config-

uration. All of these steps result in a model that can be varied and possibly run

systematically for parameter sweeps.

Geometry Import and Conditioning.

Importing geometry into COMSOL is a simple affair, requiring the user to select

which kind of files they are importing (COMSOL accepts a wide variety of CAD

files), and choosing which bodies or faces to import. The next step is to declare

graphically which imported bodies, or domains as they are called in COMSOL, are

solidly connected to one another. This is done with a ”Union” boolean function.

In Figure 29, the square comprising the horizontal battens, end fittings and vertical

battens were declared to be one domain, and the hinge attachment to the longerons

was also declared to be one domain with its adjacent longeron.
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Figure 28. Legend for naming convention reference.

Meshing.

It is important to mesh the domains of the model that have been imported into

COMSOL before anything else to ensure that the 3D modeling and geometry condi-

tioning functioned as expected. An oversight in the settings of Soliworks can affect

how the mesh is applied to the domains where the various components meet. By

default, COMSOL automatically meshes the domains with tetrahedrons [18]. For

many applications a tetrahedral mesh may work well, but as will be seen in Section

3.6, it does not work for the slender components in use here. A hexahedral mesh

can be applied quite simply in COMSOL by selecting a face to map a quadratic grid

upon, and then “sweeping” this grid through the 3D domain. The number of edge

elements can be controlled by attaching a “distribution” sub-node and altering the

values. The truss cell was meshed in this manner with a different distribution setting

for the longerons, battens, and end fittings. Interestingly, the setting for the order

of the elements in COMSOL does not reside within the meshing node and is hidden

by default. It is instead found in the main physics node and can be adjusted from

1st (linear) order up to 4th (quartic) order. Figure 30 shows the meshed model,

please note that the lines perpendicular to the members are indicative of elemental

47



Figure 29. Left: Battens and end fittings declared as one domain. Right: Longeron
and hinge attachment declared as one domain.

Table 4. Applied Material Properties

Longerons and Battens End Fittings
Young’s Modulus (E) 34.892 GPa 70 GPa

Density (ρ) 32.3543 kg/m3 1600 kg/m3

Poisson’s Ratio (ν) 0 0

boundaries. Section 3.6 will provide reasoning for the particular discretization shown.

Material Properties Application.

The material properties of the cell trusses are applied graphically to the geometric

bodies. The properties themselves are declared as simple materials: only applying

a Young’s Modulus, Poisson’s ratio, and density. All of the longerons and battens

are given the material properties from Section 3.3. The end fittings are given basic

properties of carbon fiber[25] because nominally they would be made from molded

composite material[10].
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Figure 30. Rotated view of meshed model with end fittings closeup.

Physics Setup.

“Physics” nodes in COMSOL are sets of equations that are applied to selected

geometries within the model [18]. These equations determine the behavior of the ge-

ometry throughout the simulation. During the time spent creating the methodology

for the truss deployment simulations, it was found that COMSOL is usually more

agreeable to having lesser constrained models. Adding in possibly redundant con-

straints not only causes the solver to run slower because of the additional equations,

but also restricts the model to very few modes of movement and reduces the chance

of a converged solution.

At their most basic level, a physics node such as “Fixed Constraint” acts as a

boundary condition that locks a geometry face in a static position in space (u = v =

w = 0). The Fixed Constraint was applied to the bumper blocks of Cell 0, and is

the only constraint holding the deployment in place. The next step was to declare
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the hinge joints of the mechanism. This was done by choosing two geometric faces as

attachments for the joint; one as the source and another as the destination. A hinge

joint was then created that uses both of these attachments with an axis declared on

a viable geometric edge. Figure 31 illustrates the main idea behind joint creation.

Within the hinge joint node are many options to give the joint extra properties.

For the hinges created between longerons (lglg), “Spring and Damper” as well as

“Locking” attributes are added. The hinges that join the back of the longeron to

the square frames (frlg), also have a constraint attribute that prevents the longerons

from rotating backwards. Next, forces were attached to the same hinge attachments

mentioned earlier to translate the cable force to the structure. Each cable exerts a

force on both of the attachments it is connected to, creating a tension force that

“squeezes” the truss cell. Finally, distinct contact boundaries were defined between

the front of each truss cell corner and the back of the “bumpers” on the next truss

cell. The contacts are set to use a “penalty” force between the two faces if a minimum

contact threshold is breached.

Figure 31. Example of joint being created between stowed longerons.

The order of the joint creation in this model was very important as it enhances

the overall modularity of the model. As mentioned earlier, the Solidworks model is a
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modular design in which additional cells can be added one at a time. In COMSOL,

the same pattern was followed to declare each of the hinges in the cell before moving

on the the next. This makes calling out the same corner hinge from each cell very

easy, as they are all multiples of each other. The next section benefits tremendously

from this, as the files that determine the cable forces need only be adjusted slightly

to work with the next cell.

Cable Modeling.

Modeling cables in FEA programs is usually quite difficult due to their physical

behavior. Cables do not compress, and are referred to as “zero compression” elements

[26]. This behavior challenges a lot of FEA solvers because they must continually

check the direction of the cable force to determine whether that force is in tension

or compression. COMSOL does not have any cable physics nodes, but has a large

library of other types of joints with equations available for viewing. By studying

the equations that model different kinds of joints, a “cable-joint” was created. This

new pseudo-joint is a combination of a contact and distance joint. At its most basic

level, the distance between the two attachment faces is monitored until it reaches a

certain threshold. Once past, a force is applied between the attachments, just as a

cable would. If for some reason the distance between the attachments becomes less

than the unstretched length, then the force goes back to zero. Figure 32 shows the

equations of just one of the cables in the simulation, with explanations appearing in

the following paragraph.2

Note that these are text files that are imported into COMSOL, and do not have

numbers on the left column. The numbers are used for illustration purposes only.

When COMSOL does read in the file, however, the spaces between the strings of

2c1.NXnypy indicates the cable in Cell 1 that spans from the negative Y to positive Y corners
(moving in the positive Z direction) on the negative X face of the cell.
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Figure 32. Cable c1.NXnypy equation. Comments and line numbers added for clarifi-
cation.

characters are separators to place the strings in adjacent columns. Therefore, the left

column states a variable, and the right column defines it. The first 12 lines of the

equation file declare the names of the pseudo joint. In line 1, “mbd.dsj1.xsx” denotes

the rotational center in the global X direction for the distance pseudo-joint. In the

adjacent column, “mbd.att6.xcx” indicates that this center should reside within the

center of attachment 6. This was declared internally in COMSOL during the attach-

ment and hinge joint creation step in the physics setup. This declaration continues

for the displacement and rotation of both the source and destination attachments.

Line 13 calculates the distance between the two attachments. Note that “eps” is

the variable name for the smallest float used in COMSOL, and is included to ensure

solver stability. The next three lines, 14, 15, and 16, break the distance between

the attachments into its constituent X, Y, and Z vectors by dividing the respective

coordinate direction distance by the total distance. Line 17 calculates the velocity

between the two attachments by taking the derivative of the distance with respect
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to global time. Line 18 is the switch which indicates whether or not the predefined

cable length has been reached by the pseudo-joint.3 If this main switch is true then

the cable force equation comes to life. Equation 12 clarifies the equation used for the

magnitude of the cable force in Line 19.

Fcable = k · (l0 − l)− c ·
d

dt
(l) (12)

The terms in Equation 12 are as follows: k (Stiffness Constant), l0 (Cable un-

stretched length), l (Distance), c (Damping Constant), and d
dt

(l) (Speed of elonga-

tion). An extra switch is included for the damping of the cable in order to minimize

the risk of it exerting a compression force on the attachments. Early iterations of this

equation did not include this secondary switch, and compression force was exhibited

where it should not have. The lengths of the cables were found using the geometry

of the truss cells and the MATLAB code containing the calculations are included in

Appendix 6.1. Lines 21, 22, and 23 then split up this force into components that are

applied at the attachments. Lastly, line 20 calculates Ws (Strain Energy) of the cable

(Equation 13).

Ws =
1

2
k(l0 − l) (13)

These series of equations are repeated for each of the 8 cables in all four cells of

the deploying truss system. By utilizing the modular build technique outlined in the

previous sections, each equation set must only be modified in cell and attachment

designator that requires only a shift in index number. Figure 33 comes from a double

truss simulation that was done early on to verify that the equations worked correctly.

The forces shown are from the second cell, with the first cell being the at the root

3In COMSOL, this function returns a 0 if the condition is not met, and a 1 if the condition is
met.
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of the mechanism. From the start of the simulation to the location of Annotation 1,

the applied cable forces are zero. Here is where the truss is deploying, and the cables

have not yet been stretched. Moving to the lower image that gives a close-up view of

the upper image, Annotation 2 marks the point at which the upper cables activate

when the negative tension force is applied. The first activation is of the shaping

cables on either side of the truss cell that run from the negative Y to the positive Y.

“c2.PXnypy.f” is on the positive X face of the truss cell, and “c2.NXnypy.f” crosses the

negative X face of the truss cell. Soon after the shaping cables activate, the structural

cables on the positive Y face of truss cell also activate. “c2.pxnxPY.f” crosses from

positive to negative X, and “c2.nxpxPY” crosses from negative to positive X. Some

small time after this, the complimentary shaping and structural cables activate at

Annotation 3. Interestingly, the structural cables activate before the shaping cables,

which shows that the furthest end of the truss cell must have been skewed upwards.

Proceeding towards the upper image once again, Annotation 4 illustrates how the

truss cell begins to settle towards the target cable tension of 10 Newtons. Here is

where the damping present in the cable force equations helps. However, Annotation

5 marks the point at which the first root cell locks its hinges, and causes the shape

of the second truss cell to fluctuate. It is important to note here that the structural

cables remain at negative 10 Newtons, as they should. The tension forces also never

rise above 0 Newtons, indicating that the cables never exert a compression force on

the truss cell. Lastly, Annotation 6 identifies a damping trend in which the truss

cell again starts to settle into its steady-state. Although most cable systems do not

have marked damping characteristics, adding them to these simulations helps the

system to converge in a reasonable amount of time. Finally, it should be said that

predefined constants mentioned earlier are loaded into COMSOL via a separate text

file. It contains all of the cable lengths, spring and damping constants required by
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the physics nodes in the simulation. This file, along with an example cable can be

found in Appendix 6.2.

Figure 33. Top: Cable forces from second truss cell in two truss cell simulation. Bottom:
Focus from top plot of cable activation events.

Probe Creation.

Probing variables is COMSOL’s method of choosing the results to display to the

user and prepare for export. Almost any variable can be viewed, and more variables

can be made thanks to an extensive library of functions and operators. For these

simulations, each truss cell is monitored with three different types of probes: longeron

von mises stress, applied spring-moment, and cable force. For each longeron that is

split in each cell, a probe was placed throughout both distinct domains to monitor the

Von mises stress, and is averaged. Monitoring the average stresses in the longerons
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enables a view of the stress in each cell as they lockout as well as showing if this

event causes stress in any of the other cells. The applied spring-moment is monitored

in order to view the progress of each cell’s deployment since the applied moment is

a function of the joint’s rotation. Equation 14 is used by COMSOL to compute the

applied moment, which is the the product of ks (Spring Constant) and the difference

between θ (Relative Angle) and θ0 (Pre-deformed Angle).

Mapplied = −kθ(θ − θ0) (14)

The cable forces, which were discussed in the previous section, give a sense of the

general shape of the deployed truss. For instance, if one set of shaping cables has a

higher force than the other, then the upper longeron will be at a positive or negative

angle with respect to the lower longerons. If all the cable forces are holding at the

target tension of negative 10 Newtons, then the truss cell has reached its final shape.

Also monitoring the system are three more probes that calculate the total energy

of the system. The first measures the total kinetic energy of the system, which is

declared as a simple global variable within COMSOL. The second measures the total

strain energy of the system, which is also a global variable in COMSOL but has strain

energy from the cables added as well. The third sums up the kinetic and potential

energies. In total, 67 probes feed into 13 plots that describe the deployment of the

truss cell mechanism and can be exported for further analysis in a variety of file

formats.

Solver Configuration.

Throughout the process of running deployment simulations in COMSOL, many

different values were tried in the solver settings in an attempt to optimize the sim-

ulation time. Although Section 2.3 details COMSOL’s time dependent solver, this
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section aims to show how the solver was configured and to justify the values that

were chosen. Many settings within the solver were left at their default value because

they either made no discernible difference or increased the simulation’s chance of di-

vergence. The values shown here were all adjusted from their defaults in three main,

descending hierarchical nodes: the “Time Dependent” solver configuration node, the

“Time-Dependent Solver” operation node, and the “Fully Coupled” attribute node.

The “Time Dependent” control node has two noteworthy settings that have major

impacts on the simulation. The first of which is the time range. Here, the begin and

end times are set as well as the steps between them. Being set to “0:0.01:20” indicates

that the simulation runs from 0 to 20 seconds with a nominal step of one hundredth

of a second. As will be explained later, this nominal time step is really just a target

for the BDF solver to aim for, and does not necessarily mean the solver will abide by

it. The second noteworthy setting is the “Relative Tolerance” of the solver, and is set

to a relatively high value of 0.1 or 10%. Adjusting this value from the suggested 0.01

allows the solver to be less responsive to perturbations when adjusting time steps

in the simulation [18]. It was found through numerous trials that asking the solver

to keep to a tighter tolerance caused the simulation to diverge more often. This

divergence, shown in Figure 34, usually takes the form of uncontrolled vibrations

in the lateral members of the cells. The thought is that the benefit of faster, more

consistent simulation convergence outweighs the loss of precision.

The operation node “Time-Dependent Solver” makes finer adjustments to the

simulation behavior. Importantly, the tolerance of all the simulation variables and

the settings for the time stepping methods are set here [18]. Known as the “Absolute

Tolerance”, this setting is adjusted to control the absolute error of the variables to just

1%. Higher values for less precision and the possibility of faster simulation times were

attempted, however the error within some nodes of the mesh becomes great enough
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Figure 34. Example of solver divergence through uncontrolled vibrations propagating
through the horizontal members of the cells.

to halt convergence during the simulation. Therefore it is recommended to keep this

value below the point where it does not impede convergence and above the point that

would require very high time steps to converge. The time stepping methods section in

this sub-node are also very important. After the Backwards Differentiation Formula

scheme is selected, it is important to set the solver to keep a “strict” adherence to the

aforementioned 0.01 second time interval. This setting drives the solver to return to

the set time interval after it is decreased during large gradient of the system during

the simulation. Allowing the solver to opt for “intermediate” or “free” solver steps

results in very long simulation times as the solver may stay at a very small time step

throughout the simulation. Although this may be more precise, it is not conducive

towards iterating the simulation’s parameters in a timely fashion. The last important

setting that should be mentioned is the “Maximum step”. If this is not specified as

the nominal time interval, the solver may find a chance to use even bigger time steps,

which may result not only in divergence but in the loss of data from the simulation.

Last but not least, the “Fully Coupled” attribute node uses damped Newton-

Raphson methods to converge upon a solution [18]. “Fully Coupled” here meaning
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that COMSOL solves for all physics in the simulation simultaneously. Through ex-

tensive testing, it was found that the “Constant nonlinear” method of solving works

best for these simulations. The “Damping factor” is always set to one, and the Ja-

cobian matrix is told to update on every Newton-Raphson iteration. Updating the

Jacobian matrix, which can also be known as the stiffness matrix, allows for quicker

convergence, at the computational expense of updating the matrix for every iteration.

The number of iterations is controlled by either the maximum number of iterations

or a tolerance factor. For these simulations, COMSOL is given 50 iterations to reach

a tolerance of 10%4 or else the overall time step is decreased. These settings were

chosen for their influence on the solver behavior; a solver which is responsive to large

gradients in the system that require smaller time steps, yet forgiving enough to use

a larger time step when at all possible. There are many more settings that can be

adjusted for the solver, however these numbers were found to optimize the solver and

are a balance of computation time, precision, and solver convergence likelihood.

3.6 Mesh Study

Mesh Precision.

The geometry being used in these simulations allows for the meshing of either

tetrahedral or hexahedral elements. Before choosing one over the other, it was im-

portant to study the effects of each element type on the geometry being used here.

The goal was to balance the computation time of the simulation with its precision.

Generally, lower computation time is had by lowering the DOF (Degrees of Free-

dom) of the system. However, a higher precision in finite elements is (usually) found

through higher numbers of DOF. Therefore, it was necessary to perform a study of

4The real tolerance factor is actually the number specified here, which is one, multiplied by the
relative tolerance that was set to 10% earlier.
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both types of elements as well as their order, which significantly increases the ele-

ments’ DOF and precision. The study uses the same test setup as seen earlier in

Figure 25. Using this test setup, the center deflection (Equation 10) and the various

natural frequencies (Equation 11) were calculated as the true values to be compared

against a static FEA performed in COMSOL.

It was found that the deflection was 0.0983 meters, the first natural frequency was

8.249 Hz, and the second natural frequency was 32.999 Hz. These analytical or “true”

numbers were then compared against the two different element types, each with three

different orders of formulation: linear, quadratic, and cubic. Within each of these

formulations, several different discretizations were tested. All of these variations were

tested with COMSOL in 3D space, using a stationary study for the deflection, and

an eigenfrequency study for the natural frequencies. Table 5 gives a breakdown of

the mesh variations tested while Figures 35 and 36 show a selection of results from

COMSOL.

Figure 35. Second natural frequency of quadratic tetrahedral mesh.

The goal of this study was to find the most “efficient” type of mesh possible for this

geometry. Here efficient means the most accurate mesh with the least amount of DOF.

This is quite the balancing act, as Table 5 shows that the more accurate quadratic

and cubic elements have a big increase in DOF that will ultimately put more strain on

the solver for the dynamic simulations. All of the results from the COMSOL analysis

were imported into MATLAB, where they were plotted to graphically show which
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Table 5. Mesh Study Variations

Mesh Type and Order COMSOL Sizing Number of Elements DOF

Cubic Tetrahedral

Extremely Coarse 125 2754
Extra Coarse 164 3663
Coarser 202 4551
Coarse 228 5220
Normal 348 8400

Cubic Hexahedral

Extremely Coarse 2 336
Extra Coarse 4 624
Coarser 6 912
Coarse 8 1200
Normal 10 1488

Quadratic Tetrahedral

Extremely Coarse 125 1014
Extra Coarse 164 1353
Coarser 202 1683
Coarse 228 2079
Normal 348 3159

Quadratic Hexahedral

Extremely Coarse 2 135
Extra Coarse 4 135
Coarser 6 243
Coarse 8 459
Normal 10 567
Fine 14 783
Finer 20 1107

Linear Tetrahedral

Normal 348 708
Fine 600 1212
Finer 826 1632
Extra Fine 3595 4242
Extremely Fine 4104 4914

Linear Hexahedral

Normal 10 132
Fine 14 180
Finer 20 252
Extra Fine 30 372
Extremely Fine 50 612
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Figure 36. Deflection of cubic hexahedral mesh. Deflection Scaled 10x.

mesh is the most efficient. The code which also contains the raw results can be found

in Appendix 6.1. The MATLAB results plot the percent error from the exact answers

against the number of degrees of freedom. Figure 37 shows the solution efficiency of

the meshes for center beam deflections, first natural frequency, and second natural

frequency. When viewing the plots, take note that the best candidates or most

efficient meshes are to be found in the bottom left-hand corner. Here is where the

lowest number of degrees of freedom coincide with the smallest error.

When viewing Figure 37, any result below 101 is considered good as it represents

a result that is within 10% of the true value. The quadratic hexahedral mesh is

almost completely below this line, while the rest of the quadratic and cubic meshes

are even further down, albeit with more degrees of freedom. The linear meshes, by

comparison, are barely visible, as they have at least 100% error or more. Moving down

to the first natural frequency plot, the linear order meshes are completely off the true

answer. This behavior is most likely due to the “locking” behavior that is usually

exhibited by linear order elements, as explained in Section 2.2. The quadratic and

cubic meshes meanwhile have a great amount of precision. The tetrahedral meshes

at higher order and the cubic hexahedral mesh are extremely precise, but do not

have a lot of value because their DOF are much greater than that of the quadratic

hexahedral mesh. Such a trend is continued in second natural frequency, which is

very similar to the previous figure. At this point, the best value mesh appears to be a
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Figure 37. Solution efficiency of various element types in COMSOL. From top to
bottom: center beam deflection, first natural frequency, second natural frequency.

lower fidelity quadratic hexahedral mesh, which is consistently below 10% error and

has the lowest amount of DOF. However, it would not be wise to choose this mesh

type until it is vetted at even higher natural frequencies in case they are experienced

by the deploying truss model. Figure 38 compares the meshes at the simply supported

beam’s third, fourth, and fifth natural frequencies. These higher natural frequencies

were calculated to be 74.249 Hz for the third, 131.998 Hz for the fourth, and 206.247

for the fifth.

These figures show that the first choice of the quadratic hexahedral elements do

not fare so well at these higher frequencies. Note, however, that these frequencies
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Figure 38. Solution efficiency of various element types in COMSOL. From top to
bottom: third natural frequency, fourth natural frequency, fifth natural frequency.

are quite high: 74 Hz for the third natural frequency, 131 Hz for the fourth, and

205 Hz for the fifth. Compared to the first natural frequency of 8.25 Hz, such high

frequencies may not even be sustainable for the brittle carbon fiber material that is

envisioned to be used. Additionally, the mesh types that do fare better at these high

frequencies require much more DOF. Since the test here models just one longeron,

scaling the DOF to the entire system multiplies the DOF seen here by about 36

times. (4 battens + 4 longerons for each of the 4 cells, plus the 4 base battens.)

Therefore, the quadratic hexahedral mesh was still chosen and the risk of the mesh

not performing at higher frequencies was accepted.
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Mesh Computation Time Considerations.

At first glance it would seem that the use of higher order elements to both increase

model accuracy and decrease the system DOF is a win-win. However, there is a very

important caveat that should be mentioned: increase simulation time. Higher order

elements require more complex formulations that carry over into the system stiffness

matrix. Although the system matrix is smaller due to the reduced amount of DOF,

the matrix itself is much more dense. Figure 39 visualizes the stiffness matrices of two

different meshes applied to the simply supported beam used in the previous section.

The plot on the left shows the nonzero values in the stiffness matrix for a linear

tetrahedral mesh. The mesh has 708 DOF, and the matrix is comprised of 10,918

nonzero values, meaning that the matrix is approximately 2% filled. By comparison,

the plot on the right shows the nonzero values in the stiffness matrix for the same

geometry discretized by a quadratic hexahedral mesh. This mesh has 351 DOF, but

has 29,123 nonzero values. The matrix is approximately 24% filled. Therefore, even

though the DOF of the simulation is halved by using quadratic hexahedrons, the total

number of values that the solver must deal with is tripled. Anecdotally, the simulation

time for the four cell truss increased from approximately 2.5 hours to 4 hours when

switching from a linear tetrahedral mesh to a quadratic hexahedral mesh of similar

discretizations shown here. This poses a significant increase to the simulation time,

however it is accepted here as the accuracy gains of the quadratic mesh are more than

worth it.

3.7 Deployment Envelope

An important measure of the health of the truss deployments is the envelope in

which the deployment occurs. If the deployment is too wild and has a large envelope,

then it may intersect with other geometries on the finished aperture structure while
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Figure 39. Left: Nonzero values of linear tetrahedral mesh stiffness matrix. Right:
Nonzero values of quadratic hexahedral mesh stiffness matrix.

it deploys. Therefore a scheme was created to track the displacements of the end

fittings to quantify the deployment envelope.

In COMSOL, the displacements and rotations of two end fittings that are situated

diagonally from each other on each cell are entered into an export data table. (Diag-

onally situated here, for example, means the positive Y fitting on the positive X face,

as well as the negative Y fitting on the negative X face.) The data table contains the

displacements of the end fittings at each time step during the simulation. It is then

exported into MATLAB, where it is trimmed of any extraneous data and saved as a

binary MATLAB file (.mat). Next the file is imported into a MATLAB script (Ap-

pendix 6.1), and assuming that the batten square connecting the end fittings is rigid,

the locations of the other two corners are extrapolated via simple geometry. Finally,

the script determines the maximum and minimum displacements achieved during the

simulation for the corners of all four truss cells. The output of this script file are the

maximum and minimum displacements for each axis, from which a bounding box of

the simulation can be made.
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3.8 Summary

Section 3.2 showed how the as-designed geometry works and how it can be simpli-

fied for simulation purposes. The simplification not only decreases the computational

overhead of the simulation significantly, but also places an emphasis on the deploy-

ment of the structure itself and not the performance of the structure’s individual

components. Section 3.3 calculated new material properties for the simplified geom-

etry which enables it to behave similarly to the as-designed components. Section 3.4

gave examples of the modeling nomenclature on the simulation model to show how

the different components are called out in this work. Section 3.5 walks through the

process of setting up the simulation in COMSOL. It exemplifies several aspects of the

setup and gives an in-depth explanation on how the cables are created. Section 3.6

lends credence to the decision of using a quadratic hexahedral mesh on the geometry

because it represented the best combination of accuracy and economy for these simu-

lations. Finally, Section 3.7 explained how the deployment envelope of the simulation

will be calculated using MATLAB.
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IV. Analysis

4.1 Introduction

The purpose of this chapter is to show and analyze the results of the truss de-

ployment simulations. Although one of the main goals of this work was to create

a simulation of the truss in COMSOL, it was also thought that additional simula-

tions with differing parameters would be useful. Such simulations not only show how

flexible COMSOL can be when adjusting parameters, but can also help determine po-

tential susceptibilities of the structure to certain adjustments. Please refer to Chapter

3 when viewing the results, as the nomenclature established there will be used ex-

tensively in this chapter. Section 4.2 will analyze the uncontrolled deployment of the

truss structure and show the manner in which it deploys. This includes graphical view

of the structure with the surfaces displaying the von Mises stress, plots of the applied

hinge moments in the longeron-longeron hinges that motivate the deployment, plots

of the cable forces that occur when the truss cells reach their deployed state, and

plots of the von Mises stress within the longerons with an emphasis placed on their

behavior during the hinge-locking “lockout” events. Next, Section 4.3 will show two

different simulations in which the truss structure was placed into a rotating frame.

In one simulation the rotating frame is set to rotate at 5 degrees per minute, and the

other simulation is set to rotate at 60 degrees per minute. Both rotations are about

the Z-axis and are meant to show how the deployment reacts to centripetal forces

acting on the arms. The rates of rotation are built to taper as the structure deploys

and the moment of inertia increases. Section 4.4 explores what happens when one

weak hinge is introduced into the structure. In this case, a “weak hinge” is a hinge

that only applies 80% of its moment to the longeron-longeron hinge joint. Here, the

susceptibility of the deployment to manufacturing flaws is shown. In total eight simu-
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lations were run, each with one weak hinge on the top or bottom of each cell. Finally,

Section 4.5 shows how the truss deploys in a “controlled” manner. Controlled here

meaning that the deployment order of the individual truss cells is delayed so that a

truss cell will be fully open before its adjacent neighbor is deployed. Two simula-

tions were run, one with the deployment order from root-to-end, and the other from

end-to-root, as the truss was designed.

The main model parameters chosen for all of the simulations remain the same

throughout this analysis unless otherwise specified. They are shown in Table 6 and

reflect the values that were not necessarily as-designed, but allowed the first uncon-

trolled deployment simulation to successfully deploy with a reasonable simulation

time. In a real world deployment scenario, such a large structure would not be de-

signed to deploy in under eight seconds.

Parameter Value
Longeron-Longeron Hinge Spring Constant 10 Newton-meters/radian

Longeron-Longeron Hinge Pre-Deformation Angle 3.14 radian
Longeron-Longeron Hinge Damping Coefficient 1 Newton-meter-seconds/radian

Cable Spring Constant 25 Newton-meters
Cable Damping Coefficient 5 Newton-meter-seconds

Cable Target Tension 10 Newtons

Table 6. Static Model Parameters

4.2 Uncontrolled Deployment

The uncontrolled deployment of the four cell truss simulation was the first to

be successfully completed. It was the testbed from which all of the best settings

were found for a successful deployments, as outlined in the previous chapter. This

model is notable for having the least amount of constraints placed on it, which is

the most likely explanation for its early success. To reiterate, the base zeroth cell is

fully constrained in space and the hinge moments are applied instantaneously at the
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beginning of the simulation. From there, the structure deploys as a function of the

hinge moments and the geometry through which the moments are transmitted.

Initial Displacement.

This subsection graphically shows the deployment of the truss system at select

time intervals. Care will be taken to highlight some of the important aspects of the

deployment during certain simulation times. Due to the limitations of the paper

media, this is the only section that will show a full play-by-play simulation of the

truss. All other section serve merely to show the differences from this particular

simulation. The time steps at which the simulation is shown are chosen to showcase

the more important movements of the deploying truss.

Figure 40. Uncontrolled deployment simulation displacement at 0 seconds.

Figure 41. Uncontrolled deployment simulation displacement at 0.5 seconds.
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Figure 42. Uncontrolled deployment simulation displacement at 1 second.

Figure 43. Uncontrolled deployment simulation displacement at 1.5 seconds.

First Cell Lockout Event.

Figures 40 through 43 show the displacement of the truss during the first 1.5

seconds. In Figure 41, only Cell 4 is deploying even though all of the hinge moments

are applied in the structure. This shows that the “pushback” force from Cell 4 as

it expands outwards is enough keep the rest of the cells in their stowed positions.

Figures 42 and 43 show that this continues during most of Cell 4’s deployment.

Figure 44. Uncontrolled deployment simulation displacement at 2 seconds.
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Figure 45. Uncontrolled deployment simulation displacement at 2.25 seconds.

Figure 46. Uncontrolled deployment simulation displacement at 2.4 second.

Figure 47. Uncontrolled deployment simulation displacement at 2.7 seconds.
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Here Figure 45 shows that as Cell 4 reaches its hinge lockout angles, Cell 3 begins

to deploy. At this point in the simulation, the applied moments from Cell 4’s longerons

are closing in on zero, allowing the next truss cell to start moving. Figure 45 shows

the lockout of the top longerons in Cell 4. The top longerons lock first because they

are shorter than the bottom longerons yet have the same applied moment. The red

arrows have now appeared as well, indicating that the shaping cable forces are now

active1. Although the bottom longerons must combat these cable forces from the top

lockout event, the applied moment is still great enough for the bottom longerons to

lockout in Figure 46. Figure 47 completes Cell 4’s deployment by showing both cable

forces being activated and pulling on the truss to form the desired shape.

Figure 48. Uncontrolled deployment simulation displacement at 2.23 seconds.

The following figures show the lockout event of the top longerons in detail. The

snapshots are taken at the peak and middle amplitudes of the oscillatory motion

caused by the lockout event for one cycle. During the motion, the time steps are

greatly reduced in order to properly model the motion, and so the time steps are only

a selection for the tight cluster found in the simulation. Figure 48 highlights the local

area that will be focused on for these figures.

Although the size of the time steps vary throughout the lockout event, they average

1The top structural cables are active at this point as well, but are not shown in these simulation
results. Please note that the direction of the arrows is the same as the direction of the force being
applied, and that the size of the arrows is based on the magnitude of the force. Therefore, a large
arrow indicates a large force being applied, and a small arrow indicates a small force being applied.
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Figure 49. Uncontrolled deployment simulation stress at 2.27 seconds. (Cropped)

Figure 50. Uncontrolled deployment simulation stress at 2.30 seconds. (Cropped)

Figure 51. Uncontrolled deployment simulation stress at 2.33 seconds. (Cropped)

Figure 52. Uncontrolled deployment simulation stress at 2.364 seconds. (Cropped)
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approximately 5 milliseconds, or half of the 10 millisecond target time step. Figures

49 through 52 visually represent half of an “oscillatory cycle” forced as a result of

the lockout event, and in reality this motion is comprised of approximately 20 time

steps. As the longerons bend through this cycle, the von Mises stress in the longerons

increases as a function of the bending magnitude. The values of the stress are not

very important here, as they are merely representative of deploying truss. Instead, the

stress is really indicating the amount of bending in the members during the simulation

and proves that COMSOL can capture this motion after lockout.

Figure 53. Von Mises stress of Cell 4’s longeron lockout events during uncontrolled
deployment simulation (Cropped).

Figure 53 contains the plot of the von Mises stress probes attached to the domains

of the longerons2. The figure more clearly represents the oscillatory motion spoken

of in the previous paragraph. The frequency of the oscillations is important here,

as it is approximately 7 cycles per second. This is quite close to the first natural

bending frequency of 8.54 Hz that was found in Section 3.6, and indicates that the

longerons do not experience the higher frequencies in which the chosen quadratic

hexahedral mesh performed poorly. The oscillations of the longerons can also be seen

to damp out in approximately a half second. Although the only damping present in

2The blue and red lines represent the top longerons and the cyan and green lines represent the
bottom longerons.
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the structure lies in the longeron-longeron hinges, the damping effect in the stress is

most likely a result of the numerical solver used for the simulation. It should also be

noted that there are some small perturbations in the stress before the lockout event

from 2 to 2.2 seconds. Such behavior may be attributed to Cell 3, which at this time

is beginning to open as the applied moments from Cell 4 drop to zero upon lockout.

As Cell 3 opens, the base from which Cell 4 is propelled becomes less stiff, resulting

in the extraneous motion seen here.

Cell 3 Lockout Attempt and Miss.

Figure 54. Uncontrolled deployment simulation displacement at 3 seconds.

Figure 55. Uncontrolled deployment simulation displacement at 3.5 seconds.

Figures 54 through 60 show the deployment of Cell 3. This deployment is not so

successful as the bottom longerons regress in their deployment motion. The bottom

longerons are longer, and causes some vertical motion of Cell 4 which resides on the

more positive Z face of Cell 3. The vertical motion means that when the shorter top
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Figure 56. Uncontrolled deployment simulation displacement at 3.75 seconds.

Figure 57. Uncontrolled deployment simulation displacement at 4 seconds.

Figure 58. Uncontrolled deployment simulation displacement at 4.3 seconds.

Figure 59. Uncontrolled deployment simulation displacement at 4.5 seconds.
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Figure 60. Uncontrolled deployment simulation displacement at 4.8 seconds.

longerons lockout first, there are sharper angles in the negative Y frame-to-longeron

hinges and the positive Y longeron-to-frame hinges. As a result the distance that

the cables must stretch is larger, and the force exerted by the cables overpowers the

applied hinge moment of the bottom longerons.

Figure 61. Cable forces of Cell 3 during uncontrolled deployment simulation (Cropped).

Figure 61 shows the applied cable forces in Cell 3 and Figure 62 shows the applied

moment in Cell 3’s longerons. The blue and red lines on both graphs represent the

negative Y to positive Y shaping cables in the cell and the top longeron hinges. At

approximately 4 seconds, the applied hinge moments of the top longerons reaches

zero where the lockout angle of the longerons reside. At this point in time, there is

a spike in the cable forces for the aforementioned shaping cables that form a truss

triangle. Here the applied spring moment of the lower longerons, shown in cyan and
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Figure 62. Applied hinge moment of Cell 3’s longerons during uncontrolled deployment
simulation (Cropped).

green in Figure 62, is only 10 Newton-meters. For the geometry of the truss cell at

this point, it is not enough to overcome the applied cable forces of approximately 37

Newtons. Thus, the lower longerons are forced to reverse their direction and build

more moment after this event. Later in the simulation, however, the geometry is such

that the applied hinge moment of 18 Newton-meters combats the 50 Newtons of cable

forces and is able to lockout at approximately 7.7 seconds. Although there appears to

be a simple relation between the cable force and applied moment here that dictates

a successful lockout, it is in fact more complicated. As the following Figures show,

the entire kinetic motion of the structure during deployment is a major factor in cell

deployment success.

Simulation Energies.

Figures 63 through 71 show the full deployments of Cells 1, 2, and 3. All of these

deployments were in some way aided by the momentum of the structure moving

outwards which “pulled” the cells open. This energy that is used to successfully

deploy these Cells is critical to the deployment success of the truss arm. The next

figures of this section show the raw data of the simulation, where the cable forces
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Figure 63. Uncontrolled deployment simulation displacement at 5.25 seconds.

Figure 64. Uncontrolled deployment simulation displacement at 5.6 seconds.

Figure 65. Uncontrolled deployment simulation displacement at 6 seconds.

Figure 66. Uncontrolled deployment simulation displacement at 6.4 seconds.
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Figure 67. Uncontrolled deployment simulation displacement at 6.6 seconds.

Figure 68. Uncontrolled deployment simulation displacement at 6.8 seconds.

Figure 69. Uncontrolled deployment simulation displacement at 7 seconds.

Figure 70. Uncontrolled deployment simulation displacement at 7.4 seconds.
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Figure 71. Uncontrolled deployment simulation displacement at 7.7 seconds.

applied to the Cells can be directly compared to the applied hinge moment. In these

figures it is possible to see that for the cells closer to the base, the cable to hinge

moment relationships are far greater than that of Cell 3’s lower longerons which

failed to properly deploy. To further support this claim, Figure 72 shows the total

kinetic, strain, and summed energies of the entire structure. Keep in mind that the

kinetic strain energy is calculated from the mesh of the domains in the structure, but

that strain energy also includes the cables and hinges. The summed energy is merely

an addition of the kinetic and strain energies.

Figure 72. Uncontrolled deployment simulation kinetic and strain energies.

At the beginning of the simulation, the strain energy is at its highest and the ki-

netic energy is at its lowest, as one would guess. As each truss deploys, however, the

kinetic energy keeps building even though the longerons lockout at certain times be-
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cause the cells farther out are pushed by the cells nearer the base. Interestingly, both

energies show the same disruptions caused by the lockout events. At approximately

6.4 seconds, the kinetic energy suddenly drops off as the base Cell 1 fully deploys

and stops the truss from moving outwards. Conversely, the strain energy spikes quite

suddenly, as all of the cables strain to hold and create their Cell’s intended shape.

Once Cell 3 finally locks around 8 seconds, the kinetic and strain energies form a

loose inverse relationship as the deployed truss structure moves vertically in a peri-

odic fashion. Last but not least, the summed energies of the deployment, shown in

red, and helps to explain how the structure dissipates its energy. The kinetic energy

of the truss members is mainly absorbed by themselves during the lockout events

and damped by the numerical solver. Again, the summed energies slowly decline at

first, but decay very rapidly after Cell 1 fully deploys. The notable exception being

the sharp spike in strain energy caused by the cables of Cell 3 fighting the lower

longerons finally deploying. By the end of the simulation, it is clear that the total

energy is beginning to reach its equilibrium point where only the strain energies of

the cables and truss elements are active. On its way to equilibrium, however, the sum

of the energies increases briefly from 11 to 15.5 seconds, and should not be physically

possible. Although the exact cause for the increase is not certain, it is thought that

strain energies are not being taken into account correctly.

Post Deployment Transient Motion.

Figures 73 through 88 show the remaining 12 of the total 20 seconds of the simu-

lation. Note that the structure does not uniformly move vertically and moves in more

of a “wave” fashion. Such motion can be attributed not only to the unequal length

longerons throughout the truss structure, but also the differing times of deployments.

Most of the motion seen throughout this time period is a result of the shaping cables
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Figure 73. Uncontrolled deployment simulation displacement at 8 seconds.

Figure 74. Uncontrolled deployment simulation displacement at 8.5 seconds.

Figure 75. Uncontrolled deployment simulation displacement at 9 seconds.

Figure 76. Uncontrolled deployment simulation displacement at 9.5 seconds.
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Figure 77. Uncontrolled deployment simulation displacement at 10 seconds.

Figure 78. Uncontrolled deployment simulation displacement at 10.5 seconds.

Figure 79. Uncontrolled deployment simulation displacement at 11 seconds.

Figure 80. Uncontrolled deployment simulation displacement at 12 seconds.
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Figure 81. Uncontrolled deployment simulation displacement at 13 seconds.

Figure 82. Uncontrolled deployment simulation displacement at 14 seconds.

Figure 83. Uncontrolled deployment simulation displacement at 15 seconds.

Figure 84. Uncontrolled deployment simulation displacement at 16 seconds.
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Figure 85. Uncontrolled deployment simulation displacement at 17 seconds.

Figure 86. Uncontrolled deployment simulation displacement at 18 seconds.

Figure 87. Uncontrolled deployment simulation displacement at 19 seconds.

Figure 88. Uncontrolled deployment simulation displacement at 20 seconds.
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trying to form the final parabolic shape of the reflector. Remember that the size of

the arrows indicate the force being applied. The serialized cells moving with each

other, fighting to find their own equilibrium often upsets that of its neighboring cell.

Simulation Data.

Figure 89. Uncontrolled deployment simulation cables forces of Cell 1.

Figure 90. Uncontrolled deployment simulation applied hinge moments of Cell 1.

Figures 89 through 96 show the relationships between the cable forces and hinge

moments for each cell. It is interesting to note here that although the top longerons

are shorter and deploy first in Cells 3 and 4, it is the bottom longerons that deploy
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Figure 91. Uncontrolled deployment simulation cables forces of Cell 2.

Figure 92. Uncontrolled deployment simulation applied hinge moments of Cell 2.

Figure 93. Uncontrolled deployment simulation cables forces of Cell 3.
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Figure 94. Uncontrolled deployment simulation applied hinge moments of Cell 3.

Figure 95. Uncontrolled deployment simulation cables forces of Cell 4.

Figure 96. Uncontrolled deployment simulation applied hinge moments of Cell 4.
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first in Cells 1 and 2. This phenomena is most likely a result of the geometry con-

figuration at the later stages of the deployment. Figures 97 through 100 show the

longeron stresses of each Cell during deployment. The first thing to notice on the

stress plots is the initial stress of each cell at the start of the simulation. This repre-

sents the bending of the beams as the hinge moments from the hinges are applied to

the folded longerons to begin the deployment. More importantly, however, the figures

show that the stress waves from one cell’s lockout event can be seen throughout the

other cell’s. For example, Cell 4 is the first Cell to fully deploy at approximately

2.5 seconds. The deployments of Cell 4’s longerons are timed very closely together.

After this deployment, a small positive variation in Cell 3’s stress is seen at approx-

imately 2.75 seconds as the lockout event stress travels to Cell 3. Some time later

at approximately 4.5 seconds, Cell 2 experiences a similar positive stress variation.

Although not conclusive, the results suggest that Cell 4’s lockout event stress wave

and Cell 3’s top longeron lockout event stress wave cause Cell 2’s small positive vari-

ation. Through the rest of time of the simulation similar stress wave sharing can be

seen, especially between adjacent cells. It should be kept in mind though that some

of the stresses seen in the latter parts of the simulation may also be from the slight

bending of the cells by the shaping cables. It should also be said that the magnitude

of these stresses really just indicate some displacement by the bending longerons. The

main point, however, is that these simulations show that COMSOL does translate the

events from each member in the system through the declared hinges (which are not

meshed with flexible elements) to other members in a significant fashion.

The deployment envelope is one of the most important analyses done to these

simulations. Table 7 shows the results from the MATLAB code written to determine

the maximum displacements achieved by the truss in 3D space. Keep in mind that the

truss itself is centered upon the origin of the XY Plane. Therefore, the upper and lower
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Figure 97. Uncontrolled deployment simulation longeron stress of Cell 1.

Figure 98. Uncontrolled deployment simulation longeron stress of Cell 2.

Figure 99. Uncontrolled deployment simulation longeron stress of Cell 3.

92



Figure 100. Uncontrolled deployment simulation longeron stress of Cell 4.

bounds for X-axis merely denote the width of the truss with some added horizontal

displacement of approximately 4-5 centimeters3. It is interesting that the trusses’

deployment shows any horizontal movement at all since the applied forces almost

exclusively reside in the YZ-Plane. However, the horizontal forces of the structural

cables may cause this motion as they will not always be perfectly symmetric due

to a relatively high 1% tolerance factor imposed on the dependent variables of the

simulation. The lower bound of the Y-displacement is almost a meter lower than the

height of the cells (5.31 meters) centered at the origin. The upper bound of Y, shows

an even more significant peak of almost 10 meters. Both of these may be of some

concern in future work when the rest of the reflector aperture is constructed around

this deployment. The upper Z bound validates that the solid modeling of the truss

done in the early stages of this work was done correctly. The as-designed diameter

of the complete sparse aperture is supposed to be approximately 150 meters, and

one half of one truss arm extends roughly one quarter of this diameter. Lastly, the

negative Z bound is zero, as one would expect with the model fully constrained on

the XY Plane.

3The nominal width of the truss cells is 8.74 meters and the nominal height of the truss cells is
5.31 meters.
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Completed Deployment X Y Z
Upper Bound (m) 4.4710 6.0679 37.9799
Lower Bound (m) -4.4710 -2.6422 0

Uncontrolled Deployment X Y Z
Upper Bound (m) 4.4430 9.7763 37.8630
Lower Bound (m) -4.5435 -3.6698 0

Table 7. Uncontrolled Deployment Simulation Deployment Envelope

4.3 Uncontrolled Deployments with Centripetal Acceleration

The practice of exploiting centripetal acceleration of orbiting bodies is nothing

new. It was thought that by adding a rotating frame to the simulation that perhaps

a better deployment behavior could be achieved. In this instance, two simulations

were run: one with an initial rotation of 5 degrees per minute, and another with an

initial rotation of 60 degrees per minute. Please note that a angular velocity of 60

degrees per minute is very excessive for a structure of this size in space, and is only

used here to exemplify COMSOL’s capabilities. Both of these rotations speeds are

initial, since the deployment of the truss arm creates a larger moment of inertia to

slow the rotation down. Both simulations place a rotating frame about the Z-axis, the

center of which would be the hub of the four arms for the complete sparse aperture.

A simple function was created in COMSOL to control the angular velocity of the

rotating frame as a function of the varying moment of inertia of the truss arm. An

initial angular momentum was assumed for the stowed truss that was calculated as

a simple centroid mass. The initial angular momentum is them divided by the same

mass multiplied by the square of the increasing radius. The radius is determined by

the Z displacement of Cell 2’s frame connectors. This is the simplest formulation

for moment of inertia and is used only to get some form of diminishing rotation in

the simulation. All of these terms are used to solve for an angular velocity, which is

applied to the rotating frame physics node built into the simulation model. Figure 101
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shows this created function against the time steps of the simulation, and Equation 15

shows the basic kinetics used to determine the angular velocity of the rotating frame.

Figure 101. Uncontrolled deployment simulations in rotating frames.

H = mr2ω → ω =
Hinitial

mr2centroid
(15)

Where H (Angular Momentum), m (Mass), rcentroid (Mass Centroid Radius), and

ω (Angular Velocity).

This figure illustrates how quickly the moment of inertia changes for the truss.

At approximately 4 seconds, the rotating frame has all but stopped acting on the

structure. One would hope that the rotation would halt closer to the truss’s fully

deployed state, however that is not the case using this methodology. This method-

ology being used may have been grossly oversimplified, however the results gleaned

from these simulations are still valuable and show how the model reacts to the ap-

plied centripetal acceleration, albeit only for the cells that are the first to deploy.

The following subsections show how the deployment speeds of the simulations differ

from the first uncontrolled simulation already detailed and will then show how the

deployment speeds affected the lockout stress events. Both subsections will focus on

Cells 3 and 4, as they were most affected by the centripetal acceleration.
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Cell Deployment Speed.

As the frame rotates with the deploying truss in it, it would be reasonable to expect

that the added centripetal force would pull the trusses out from their stowed position

faster than if it had not been there. Upon analysis of the simulations, however, this

is not really the case. Figure 102 shows only two distinct lines even though there

are six sets a data present: the applied hinge moment for one of the top longerons of

Cells 3 and 4 for the uncontrolled deployment, the deployment with an intial 5 degree

per minute of rotation, and the deployment with an initial 60 degrees per minute

of rotation. The presence of only two distinct lines means there was no difference

between any of these simulations. This is most likely a result of the low density

of the truss members, which are not affected too much by the applied centripetal

acceleration. It should also be restated that the hinges contain a small amount of

damping, which would keep the longerons from accelerating too quickly.

Figure 102. Select top longeron applied hinge moments in uncontrolled deployment
simulations in rotating frames.

However, upon zooming into the graphs at the lockout event locations, some

disparities in the data appear. Figure 103 is a cropped image of Figure 102 and shows

the overshoot exhibited by the hinges in the rotating frame simulations. Although

minimal, this kind of behavior at least validates that the rotating frame was indeed

applied to the structure. If one were to look to Cell 3’s results in this manner, the

96



results are the same, albeit not as pronounced. These plots mean that although

the hinges did not lock any faster, they did lock harder which means that more

displacement in the locked longerons can be expected.

Figure 103. Select top longeron applied hinge moments in uncontrolled deployment
simulations in rotating frames. (Cropped)

Cell Lockout Stress.

Increased displacement in the longeron-longeron hinges during the lockout event

means increased displacement and stress in the members. Indeed, Figure 104 shows

that the added centripetal acceleration from the rotating frame increases the stress

sustained by the longerons during lockout. The highest stress is seen in the longerons

from the faster rotating frame simulation. Not only is this stress higher, but even

after the lockout event, the longerons exhibit some harmonic motion that was not

present in the original non-rotating simulation. It seems as though the added force

of the rotating frame is adding some kind of axial load to the extended longerons

and is causing this extra motion. Although it should be said that such motion may

be more indicative of the simplified geometry or the numerical solver tolerances, the

fact remains that rotating the structure during deployment may result in some added
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motions.

Figure 104. Cell 4 top longeron von Mises stress in different rotating frames. (Cropped)

Cell 3 exhibits the same harmonic disturbances as Cell 4, as seen in Figure 105,

but the peak stress of the faster rotating frame simulation is more interesting. It

appears as though the additional force applied to the completely deployed Cell 4

has pulled on Cell 3. This has created a much large peak stress than the other

two simulations. This higher peak stress is even accompanied by a higher frequency

response, which is generally not desirable in a structure such as this. Therefore, these

results suggest that rotating the structure during the deployment does not seem to

positively influence it at all.

Figure 105. Cell 3 top longeron von Mises stress in different rotating frames. (Cropped)

From a larger perspective, the last two truss Cells 1 and 2 do not exhibit such
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notable increases seen in Cells 3 and 4. Most likely the damped hinges contained

within Cells 1 and 2 were able to control the deployment so that the momentum from

the first two deployments did not damage the structure. It should also be mentioned

that the same Cell 3 bottom longeron initial miss occured as well, and that the

remainder of the simulations emulated the non-rotating frame of the first. More

importantly, comparison of the stress results in both cells reveals how the numerical

solver may be sensitive enough to model the entirety of the stress behaviors in the

longerons. Take Figure 105 for example. From 7.5 to 8 seconds, all three plots overlay

onto each other. From 5.5 to 6 seconds, only the slower rotating frame exhibits any

harmonic motion. These differences in results can most likely be directly attributed

to the 10% tolerance factor imposed on the time steps in the solver settings. This

setting allows the simulation to be run in a in a few hours on relatively low power

computers and captures the global motion of the simulations quite well. Table 8

shows the deployment envelopes of these simulations.

Completed Deployment X Y Z
Upper Bound (m) 4.4710 6.0679 37.9799
Lower Bound (m) -4.4710 -2.6422 0

Uncontrolled Deployment X Y Z
Upper Bound (m) 4.4430 9.7763 37.8630
Lower Bound (m) -4.5435 -3.6698 0

5 Degrees per Minute Initial Rotation X Y Z
Upper Bound (m) 4.4283 9.8037 37.8550
Lower Bound (m) -4.5370 -3.6490 0

60 Degrees per Minute Initial Rotation X Y Z
Upper Bound (m) 4.4850 9.9063 37.8430
Lower Bound (m) -4.4801 -3.6472 0

Table 8. Various Deployment Simulation Deployment Envelope
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4.4 Weakened Hinges

Manufacturing defects are a fact of life when it comes to fabricating engineering

designs. The space industry spends a great deal of money on flight-ready hardware to

reduce the chances of any individual part failing. As has happened many times in the

past, however, if something can fail, it will fail. Therefore the purpose of this section

is to explore the deploying truss structures susceptibility to manufacturing defects. In

total, eight simulations were run. Each simulation places a “weak hinge” in the top or

bottom of each cell. Here, “weak” means a longeron-longeron hinge that only applies

80% of its intended torque4. It was thought that since these hinges are what motivates

the structure to deploy, that if one were to be outside manufacturing specifications,

that they may compromise the deployment of the structure. From anecdotal evidence

gleaned from creating these simulations, if one of these hinges applies no moment

whatsoever, then that cell will fail to deploy all together. All other hinges in the

structure are much simpler than these longeron-longeron hinges, and will reach steady

state via the shaping cables that dictate the truss arm’s final shape. Instead of

showing the results from each individual simulation, this section will only discuss

how the simulation with the particular defect differed from the nominal deployment

shown in Section 4.2. Concluding this section will be some general remarks on the

observed behavior of the structure in response to these manufacturing defects. A

table of the deployment envelopes for each simulation will also be included at the

end.

Weak Hinge in an Upper Longeron of Cell 1.

With a weak hinge present on the negative X positive Y longeron of the base Cell

1, the truss was able to fully deploy. However, the structure had some trouble coping

480% was chosen somewhat arbitrarily and represents a value at which a single truss simulation
would just barely achieve its lockout state in multiple observed attempts.
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with the hinge moment deficit. Figure IV.106(a) shows the weak hinge in place in

Cell 1. Figures IV.106(a) through IV.106(d) show that the bottom longerons of Cells

2-4 failed to deploy on their first attempt. Meanwhile, all of the top longerons in the

entire structure were able to deploy quite easily. It is also interesting that the bottom

longerons of Cell 4 were the last to deploy in the simulation. The exact cause for this

behavior is not very well known, and may only reveal itself through further analysis

of the following simulations. Although not included in this work, the stresses and

cable forces of the deploying structure remain largely the same for this deployment

simulation.

Weak Hinge in a Lower Longeron of Cell 1.

The weak c1.nxny.lglg hinge impeded the structure from fully deploying in this

scenario. Again, it is only the lower longerons that have issues when a weak hinge

is introduced in Cell 1. It is slightly counter-intuitive to think that a weaker lower

hinge in Cell 1 would keep Cell 4’s lower hinges to deploy. The weak hinge should

allow for less push back on Cell 4’s lower longerons, enabling them to deploy easier.

However, the weak hinge may be affecting the geometry throughout the simulation

and may be less conducive to a lower longeron lockout event. Indeed, Table 95 shows

that the deployment envelopes for both Cell 1 weak hinge deployments causes more

vertical, positive Y motion than the original uncontrolled deployment. Figure 108

shows the truss at the end of the simulation. Note that these weak hinge simulations

were run up to 25 seconds to capture more of the post-deployment, transient motions

of the structure. The stress and cable forces were once again on par with that of the

uncontrolled simulation, and did not show any significant increase.

5This table is shown in the final subsection of this section.
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(a) Cell 1 applied hinge moment. (Cropped) (b) Cell 2 applied hinge moment. (Cropped)

(c) Cell 3 applied hinge moment. (Cropped) (d) Cell 4 applied hinge moment. (Cropped)

Figure 106. Applied hinge moments of uncontrolled deployment with hinge c1.nxpy.lglg
set to 80%.
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(a) Cell 1 applied hinge moment. (Cropped) (b) Cell 2 applied hinge moment. (Cropped)

(c) Cell 3 applied hinge moment. (Cropped)

(d) Cell 4 applied hinge moment.

Figure 107. Applied hinge moments of uncontrolled deployment with hinge c1.nxny.lglg
set to 80%.
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Figure 108. Incomplete truss deployment at final simulation time with weak lower
longeron-longeron hinge in Cell 1 (c1.nxny.lglg).

Weak Hinge in an Upper Longeron of Cell 2.

The weak top hinge (c2.nxpy.lglg) kept the truss structure from fully deploying.

Figure 109(a) shows the hinge moments for Cell 1, which progress similarly to the

original uncontrolled deployment simulation. Figure 109(b) shows that Cell 2 does

not have a failed attempt at deploying, but rather is delayed thanks to the weaker

hinge. Although one weak hinge makes the cells asymmetric in their initial behavior,

they eventually converge back to symmetry as the cell finalizes its deployment. Cell 3

again has some trouble deploying, but is not as bad as Cell 4, which failed to deploy

throughout the simulation. It looks as though Cell 4 will not ever fully extend in this

deployment mode as applied hinge moments are trending towards a horizontal line.

Perhaps Cell 4 would eventually lockout if the structure was given enough time to

stop moving altogether. Again, the likely culprit in this incomplete deployment is the

more vertical motion caused by the weak hinge, as shown in Table 9. The stress and

cable forces showed no significant changes that would affect the deployment.

Weak Hinge in a Lower Longeron of Cell 2.

Creating a weak hinge in c2.nxny.lglg affected the deployment of the truss arm

quite dramatically. Figure 111 illustrates how poorly this deployment went. First

off, the top longerons never fully extended. The shape of the geometry around 7
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(a) Cell 1 applied hinge moment. (Cropped) (b) Cell 2 applied hinge moment. (Cropped)

(c) Cell 3 applied hinge moment. (Cropped)

(d) Cell 4 applied hinge moment.

Figure 109. Applied hinge moments of uncontrolled deployment with hinge c2.nxpy.lglg
set to 80%.
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Figure 110. Incomplete truss deployment at final simulation time with weak
c2.nxpy.lglg hinge.

seconds caused a large spike in the shaping cable forces (Figure 112) that oppose

the top longerons in Cell 1 (Figure 113). This spike in addition to the upward mo-

mentum of the deploying truss causes the entire structure to swing upwards. The

upward momentum was most likely caused by the incomplete deployment of all of

the cells occuring almost simultaneously approximately one second before Cell 1’s

top longerons deployment failure. It is also interesting to note that the weak bottom

hinge on the negative X face of the trusses translates to Cell 4, whose “nxny” never

deployed throughout the simulation. This phenomena is quite strange as Figure 114

shows that this hinge did indeed reach its lockout rotation. Perhaps the default lock-

ing hinge settings within COMSOL were not strict enough to keep the hinge closed,

or the solver tolerances were not close enough to catch the lockout. Once again, the

stresses experienced by the structure were within normal ranges. Table 9 shows just

how much vertical travel the truss underwent during this simulation.

Weak Hinge in an Upper Longeron of Cell 3.

In contrast to the previous two simulations, creating a weak hinge in the top of Cell

3 had very little effect on the deployment. Figures 115(a) through 115(d) show that

there was little change in the deployment of the truss compared to the uncontrolled

dpeloyment. Notably, the bottom longerons of Cell 4 were once again delayed in its
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Figure 111. Incomplete truss deployment at final simulation time with weak
c2.nxny.lglg hinge.

Figure 112. Cable forces of Cell 1 in c2.nxny.lglg weak hinge simulation.

Figure 113. Applied hinge moments of Cell 1 in c2.nxny.lglg weak hinge simulation.

107



Figure 114. Applied hinge moments of Cell 4 in c2.nxny.lglg weak hinge simulation.

deployment, but were able to lockout around 9 seconds into the simulation. Figure

115(c) shows that the stronger of the two hinges will cause the weaker hinge lockout

at the same time as the stronger. There is some delay in Figure 115(b) for Cell 2 to

deploy, however it eventually does. The most interesting aspect of this simulation is

that the weaker hinge in Cell 3 allows it to deploy on its first attempt, which does

not happen with the stock settings in the uncontrolled deployment. This comes at a

cost of Cell 4 being delayed to deploy, but may lead to some thoughts on varying the

spring stiffnesses throughout the truss to create smoother deployments in the future.

There were not any notable changes in the stresses or cable forces of this simulation.

Weak Hinge in a Lower Longeron of Cell 3.

The weak c3.nxny.lglg hinge did not have a great effect on the truss deployment. If

anything, the weaker hinge pronounced Cell 3’s problems with its lower longerons seen

in the uncontrolled deployment, as seen in Figure 116(c). Other than this, there was

nothing remarkable about this simulation. The stresses, cable forces, and deployment

envelope showed no signs of any significant behavior.

Weak Hinge in an Upper Longeron of Cell 4.

A weaker hinge in an upper longeron of Cell 4 does not affect the deployment of

the structure significantly. The lower longerons of Cells 2 and 3 were both delayed
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(a) Cell 1 applied hinge moment. (Cropped) (b) Cell 2 applied hinge moment. (Cropped)

(c) Cell 3 applied hinge moment. (Cropped) (d) Cell 4 applied hinge moment. (Cropped)

Figure 115. Applied hinge moments of uncontrolled deployment with hinge c3.nxpy.lglg
set to 80%.
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(a) Cell 1 applied hinge moment. (Cropped) (b) Cell 2 applied hinge moment. (Cropped)

(c) Cell 3 applied hinge moment. (Cropped) (d) Cell 4 applied hinge moment. (Cropped)

Figure 116. Applied hinge moments of uncontrolled deployment with hinge c3.nxny.lglg
set to 80%.
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in their deployment. Although Cell 3 is usually always delayed, as seen in the first

uncontrolled deployment, Cell 2 is delayed by the geometry created by Cell 4. In Cell

4, the top longerons take approximately 5.5 seconds to fully extend due to the weaker

hinge. It appears as though the stronger hinge takes some time to match the rotation

of the weaker in order to fully deploy. Cell 1, as usual, is unaffected by a change so

far away from itself. The stress and cable forces show very little difference compared

to the uncontrolled simulation and the deployment envelope is unremarkable.

(a) Cell 1 applied hinge moment. (Cropped) (b) Cell 2 applied hinge moment. (Cropped)

(c) Cell 3 applied hinge moment. (Cropped) (d) Cell 4 applied hinge moment. (Cropped)

Figure 117. Applied hinge moments of uncontrolled deployment with hinge c4.nxpy.lglg
set to 80%.
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Weak Hinge in a Lower Longeron of Cell 4.

Once again a weak hinge in a lower longeron causes the truss arm to fail to deploy.

Unlike the previous examples, however, the bottom longerons of Cell 4 fail to deploy

thanks to the weaker hinge in one of the longerons. Other than this failure, the rest of

the truss structure behaves as expected. Cells 1 and 2 deploy without any hesitation,

and Cell 3 fails its first attempt. It appears as though the added mass of Cell 4 itself

on the end of the truss arm does very little to affect the rest of the truss’s deployment.

The stresses and cable forces were once again wholly unremarkable.

Observations and Remarks.

Figure 120 shows a side view of the truss arm in its deployed state for each of the

weak hinge deployment simulations. The weak hinges are shown as dashed lines, and

the deployment time for each longeron pair is represented through the thickness of the

line. The longer the time to deploy, the thicker the line. For example, if the longeron-

longeron hinge regresses, then the time it takes to recover and fully extend is four

seconds, then the line thickness is scaled by four times. If a longeron is not present

in the Figure, then the longeron failed to deploy within the simulation time. For

further clarification, the failed deployments are in red and the successful deployments

are shown in blue. Table 9 complements Figure 120 and displays the deployment

envelopes for all of the simulations discussed in this section.

The results are far from conclusive, but it might be said that the successful de-

ployment of the truss is more dependent on the lower longerons. The lower longerons

do not deploy as well as the upper longerons because they are longer yet have the

same spring-hinge moment applied to them. This decreases the lower longerons’ rela-

tive mechanical advantage and increases their deployment time. The increased lower

longeron deployment time is further reduced by the shaping cables which activate
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(a) Cell 1 applied hinge moment. (Cropped) (b) Cell 2 applied hinge moment. (Cropped)

(c) Cell 3 applied hinge moment. (Cropped)

(d) Cell 4 applied hinge moment.

Figure 118. Applied hinge moments of uncontrolled deployment with hinge c4.nxny.lglg
set to 80%.
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Figure 119. Incomplete truss deployment at final simulation time with weak
c4.nxny.lglg hinge.

once the upper longerons deploy. They also create a vertically-moving geometry that

impedes their own deployment as they move. Overall, the lower longerons may require

an adjustment in parameters to increase their chance of successful lockout.

Weak hinges in Cell 2 proved to be fatal for the deployment of the truss arm,

especially when a lower longeron contained the weak hinge. Most times, the failed

deployment was caused by the lower longerons of Cell 4. Cell 4 does not have any

added momentum from other cells connected to its positive Z face to pull it open.

Additionally, the residual swaying of the truss arms triggers the shaping cables in

Cell 4 and further impedes its lower longerons from locking out.

Many more conjectures can be made from this Section, but the main takeaway

should be that COMSOL successfully solved all of these asymmetric simulations. It

should be mentioned that setting up the different scenarios is very easy, requiring only

the weak hinge’s moment to be multiplied by 80%. Furthermore, the solver does not

need to be adjusted in these instances. The only caveat, as mentioned in Section 4.3,

is that the simulations here only represent the larger global motion of the deploying

truss. This is not a problem for the work here, which seeks to merely model the

truss’s deployment, but deeper analysis into the truss’s sensitivity to perturbations

would require a more strict time stepping protocol.
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Figure 120. Weakened hinges study summary.
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Completed Deployment X Y Z Uncontrolled Deployment X Y Z
Upper Bound (m) 4.4710 6.0679 37.9799 Upper Bound (m) 4.4430 9.7763 37.8630
Lower Bound (m) -4.4710 -2.6422 0 Lower Bound (m) -4.5435 -3.6698 0

Weak c1.nxpy.lglg Hinge X Y Z Weak c1.nxny.lglg Hinge X Y Z
Upper Bound (m) 4.4221 11.4660 37.8360 Upper Bound (m) 4.4088 11.5768 37.3200
Lower Bound (m) -4.5671 -2.8143 0 Lower Bound (m) -4.5898 -2.8442 0

Weak c2.nxpy.lglg Hinge X Y Z Weak c2.nxny.lglg Hinge X Y Z
Upper Bound (m) 4.4157 10.0887 37.3610 Upper Bound (m) 4.4850 32.5646 36.5340
Lower Bound (m) -4.5447 -2.7412 0 Lower Bound (m) -4.5216 -3.3617 0

Weak c3.nxpy.lglg Hinge X Y Z Weak c3.nxny.lglg Hinge X Y Z
Upper Bound (m) 4.4225 9.4141 37.7630 Upper Bound (m) 4.553 11.6904 37.8410
Lower Bound (m) -4.5197 -3.6866 0 Lower Bound (m) -4.5239 -4.5239 0

Weak c4.nxpy.lglg Hinge X Y Z Weak c4.nxny.lglg Hinge X Y Z
Upper Bound (m) 4.4554 8.9432 37.7080 Upper Bound (m) 4.4306 11.1625 37.3080
Lower Bound (m) -4.4677 -2.8025 0 Lower Bound (m) -4.5682 -2.7809 0

Table 9. Uncontrolled and weak hinge deployment simulation deployment envelopes

4.5 Controlled Deployments

Controlled deployments, in this context, describes a deployment in which the mo-

tivating longeron-longeron spring hinges apply their moment only when the previous

cell is fully deployed. Therefore, instead of the entire truss arm attempting to move

radially all at once, each cell takes its turn to deploy. It is thought that by timing the

release of each cell, the displacements sustained by the structural members and the de-

ployment envelope would both be reduced. Two different models were created to test

the controlled deployments. One model was set to deploy Cell 4 first, then move to

Cells 3, 2 and then 1. This is how the as-designed truss is supposed to open. Another

model was set to deploy Cell 1 first at the root of the arm, then deploy Cells 2, 3, and

then 4. Modeling these controlled deployments turned out to be more difficult than

first anticipated. Initially, it was thought to merely turn on the spring-hinges from an

“off” position at different times throughout the model. Unfortunately, early attempts

showed that completely disabling the spring-hinges near the base of the truss arm

caused some unintended consequences. In the case of the end-to-root deployment,

the bumper blocks between the batten squares would contact each other quite a lot.

This caused the solver to seek very small time steps for extended periods of time to

solve for the forces applied to the blocks. Additionally, the constant back and forth
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motion sustained by the longerons meant that they would begin to rotate in differ-

ent directions due to the way in which the geometry was modeled. Figure IV.121(a)

shows how the longerons would begin to rotate, and Figure IV.121(b) shows how the

geometry shifts when the longerons move in this manner. Attempts to constrain the

motions of the “frlg” and “lgfr” hinges did not alleviate this behavior. When the

simulation was allowed to keep running with this awkward longeron placement, the

deployment would fail rather spectacularly (Figures IV.122(a) and IV.122(b)).

(a) Cell 1 longerons rotating at their connections
to the batten frames.

(b) Close up of Cell 0 and Cell 1 bumper blocks
misaligning.

Figure 121. Examples of unwanted motion when longeron-longeron hinges are disabled.

To rectify this behavior, the hinges spring constants are halved, and then allowed

their full spring stiffness when it is their turn to deploy. The deployment of each

individual cell is triggered by a time delay function, which also integrates a smoothing

function to apply the moment gradually. Figure 123 show how the hinge moments

are applied throughout the simulation. For the end-to-root deployment at time zero,

the “Initial Hinge Moment Curve” is applied to all of the Cells. Also at this time,
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(a) Cell 1 longerons rotating at awkward angles. (b) Deployment status near the end of the sim-
ulation.

Figure 122. Unwanted motion propagating through simulation.
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Cell 4’s moment curve is applied. Then throughout the simulation at different times,

the extra 50% of the spring stiffness constant is added to each cell. At four seconds,

Cell 3’s moment curve is added to the initial 50% from the beginning. For Cells 2 and

then 1, this addition occurs at 8.5 seconds and 15 seconds respectively. Conversely,

the root-to-end deployment applies the additional curves in the opposite order. It

is important to note that these simulations have a higher base spring constants for

the longeron-longeron hinges. It was found that when the original spring constant

of 10 Newton-meters/radian was used with this scheme, that half was not sufficient

to keep the longerons from rotating about their frame connection points. Also note

the smoothing applied to the moment curves. The smoothing was built-in to prevent

any shock loading on the structure during its deployment, which may have resulted

in undesirable behavior. Everything else in these simulations is setup identically to

the preceding simulations. The following subsections will describe the deployment

characteristics of each controlled simulation, and will then compare the results to the

uncontrolled simulation presented first in this chapter.

End-to-Root.

Figure 124 shows Cell 1 before it deploys, and Figure 125 shows Cell 1 directly after

both upper and lower longerons complete their lockouts. It is early in this deployment,

but so far the truss looks almost to identical to the uncontrolled deployment 46. The

sameness even extends to Cell 3, which is beginning to deploy at this point. It seems

as though the halved hinge moments are enough to move Cell 3 outwards.

Figure 126 shows Cell 3 as it is about to lockout. Notice here that some red arrows

are visible already in Cell 3, and indicates that Cell 3 will have the same deployment

issues as in the uncontrolled simulation. Figure 127 all but confirms this indication.

The uneven upper and lower longerons again create a geometry that moves vertically
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Figure 123. Applied hinge moment curves for controlled deployment simulations.

Figure 124. End-to-root controlled deployment simulation at T = 1.9 seconds.
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Figure 125. End-to-root controlled deployment simulation at T = 2.3 seconds.

as well as radially. This motion not only creates a larger deployment envelope, but

impedes some of the cells in their lockout motions. Again the halved spring moments

in the other cells proves sufficient to motivate the entire structure radially, albeit at

a slower pace than in the uncontrolled simulation.

Figure 126. End-to-root controlled deployment simulation at T = 3.8 seconds.

Figure 127. End-to-root controlled deployment simulation at T = 4.5 seconds.

Figure 128 shows the point in time in the simulation where Cell 2 is about to lock

its upper longerons. Notice that the lower longerons in Cell 2 are also having trouble
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deploying completely, and Cell 1 is beginning to move as well. Figure 129 shows how

the deployment of Cell 1 exacerbates the deployment of the lower longerons of Cells

2 and 3 in that they do not have enough moment to overcome the radial motion of

the entire structure. It should also be noted here that the deployment is moving

vertically in a significant fashion.

Figure 128. End-to-root controlled deployment simulation at T = 5.6 seconds.

Figure 129. End-to-root controlled deployment simulation at T = 6 seconds.

Figure 130 shows how the lower longerons deploy before the upper longerons in

Cell 1, which does not occur in any other Cell. This is most likely a result of the

vertical and radial movement being exhibited by the structure at this point. The

momentum of the structure is such that it pulls Cell 1 open. Figure 131 shows that

even with a large cable force being applied by the two red arrows in the upper-right

corner of Cell 1, the upper longerons are able to deploy thanks to the overall kinetic

energy of the system. The lower longerons of Cell 2 are also about lockout at this

point as well, also due to the system’s kinetic energy.
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Figure 130. End-to-root controlled deployment simulation at T = 6.6 seconds.

Figure 131. End-to-root controlled deployment simulation at T = 7.2 seconds.

Figure 132 fully realizes the radial momentum that the structure has built through-

out the simulation as almost all of the longerons lock into place. Figure 133 completes

the deployment of the longerons as everything is now locked out. The remainder of

the simulation, which runs to 25 seconds, involves the same vertical swaying motion

seen previously in the uncontrolled deployment.

Figure 132. End-to-root controlled deployment simulation at T = 7.35 seconds.

Before expanding on the analytics of this deployment, it should be stated that
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Figure 133. End-to-root controlled deployment simulation at T = 8 seconds.

the control scheme did not work as intended. Even though Cell 1 was not set to have

its full moment applied until 15 seconds into the simulation, the entire structure was

deployed at 8 seconds. Instead, this analysis is looking at a deployment with differing

spring constants. When compared to the uncontrolled simulation, this simulation has

three cells with 75% of the applied moment of the uncontrolled, and one cell with

150% of the applied moment. Therefore, the numbers cannot be directly compared

between the two, but some general trends can be analyzed.

The controlled deployment offers a different energy distribution from the uncon-

trolled deployment (Figure 72). Figure 134 shows that instead of an almost directly

proportional energy distribution between kinetic and strain energies, the controlled

deployment has less kinetic energy. This may lead to a decrease in kinetic energy and

lead to a deployment that suffers less stress in its components during lockout events.

Figure 134 also seems to suggest that the increase in total energy seen in the latter

parts of the simulation may be due to the increase in total strain enery. Perhaps the

methodology for modeling the strain energy of the cables is incorrectly inflating the

values seen here. Also of note is that even with the reduced spring-hinge moments,

Cells 1-3 deploy pretty much the same. However, these Cells may have been helped

by the extra momentum afforded to them from Cell 4’s deployment.

Although this “controlled” deployment did not really control that well, it still
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shows how COMSOL can be used to alter the parameters of the simulation quite

easily. Equally as important, the simulation is stable despite the parameter changes,

which can prove challenging to many other FEA packages. Table 10 shows that the

deployment envelope of this “controlled” deployment is significantly worse than the

uncontrolled deployment in the positive Y direction.

Figure 134. End-to-root controlled deployment simulation energy.

Completed Deployment X Y Z
Upper Bound (m) 4.4710 6.0679 37.9799
Lower Bound (m) -4.4710 -2.6422 0

Uncontrolled Deployment X Y Z
Upper Bound (m) 4.4430 9.7763 37.8630
Lower Bound (m) -4.5435 -3.6698 0

End-to-Root Controlled Deployment X Y Z
Upper Bound (m) 4.4620 12.4622 37.8560
Lower Bound (m) -4.5485 -3.3783 0

Table 10. Uncontrolled and end-to-root deployment simulation deployment envelopes

Root-to-End.

The purpose of this subsection is to show how a backwards deployment would

function for this truss arm. To reiterate, the same methods are applied as the previous

section, except the order in which the Cells are activated is reversed. Therefore, the

goal of this simulation is to deploy Cell 1, then Cell 2, Cell 3, and finally Cell 4. Figure
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135 shows the simulation after just two seconds of running time. It once again shows

that although the halved spring-hinge moments keep the bumpers from touching each

other too much, they do little to control the deployment of the Cells. As Cell 1 begins

to open, Cell 4 still has enough applied moment to move itself radially faster than

Cell 1 can push the entire structure. In Figure 136, Cell 4 is about to lock itself out

as Cell 1 propels the entire structure outwards.

Figure 135. Root-to-end controlled deployment simulation at T = 2 seconds.

Figure 136. Root-to-end controlled deployment simulation at T = 3.1 seconds.

Figure 137 shows the point in the simulation where it appears as though Cell 4 is

on the cusp of locking out. However, Figure 138 shows the simulation half a second

later, where the doubled hinge moment of Cell 1 starts to overrun Cell 4. As Cell 4

is beginning to regress in its deployment here, Cell 3 which supports it is beginning

to bend backwards quite a lot. So much in fact that the geometry here is intersecting

and is therefore unrealistic.
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Figure 137. Root-to-end controlled deployment simulation at T = 3.5 seconds.

Figure 138. Root-to-end controlled deployment simulation at T = 4 seconds.

At 4.9 seconds into the simulation, Cell 1 is about to fully deploy, as shown in Fig-

ure 139. At this point, Cell 4 has regressed even further towards its stowed state, and

Cell 3 has recovered in a way as to be realistic again. Figure 140 shows the simulation

right after Cell 1 completely locks out. Cell 3 is in an extreme configuration at this

point, and its prognosis for full deployment does not look good. Cell 2 exacerbates

Cell 3’s precarious outlook as it is triggered by the timing function in COMSOL and

gains a higher hinge moment. Figure 141 shows how the activation of Cell 2 adds to

the applied moment it had from the start of the simulation. Note, however, that the

hinge never reaches its full potential, as it has enough moment to begin to deploy at

approximately 5.5 seconds.

Figure 142 shows the point at which Cell 2 is about to lockout. This is where

Cell 2 dominates the other remaining cells thanks to its double spring-hinge moment.

Interestingly, the top longerons of Cell 3 have locked out due to the rotation of Cell
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Figure 139. Root-to-end controlled deployment simulation at T = 4.9 seconds.

Figure 140. Root-to-end controlled deployment simulation at T = 5.1 seconds.

Figure 141. Root-to-end controlled deployment simulation Cell 2 applied hinge mo-
ment.
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4 during the deployment. Figure 143 shows Cell 2’s fully deployed state. It is also

about the time where Cells 3 and 4 an begin moving on their own, instead of being

driven into bad geometry conditions by the root cells. In addition, Figure 143 shows

that three shaping cables are active and pointing downwards. This indicates that the

entire truss arm is about to move downwards as the two root cells attempt to find

their equilibrium.

Figure 142. Root-to-end controlled deployment simulation at T = 6.0 seconds.

Figure 143. Root-to-end controlled deployment simulation at T = 6.4 seconds.

Figures 144 through 147 show the before and after instants in which the lower

longerons of Cells 3 and 4 finally locked out. One will observe that these events take a

considerable amount of simulation time. At the relatively small angular displacement

these longerons must travel, the applied hinge moment is at its weakest, and is not

conducive to seeking its final lockout position. Furthermore, Cells 1 and 2 are moving

very quickly throughout these time steps. The end cells are subject to whatever

motion they are connected to, and in this case the root cells’ motion impedes the end
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cells’ deployment. As mentioned in the previous subsection, the remaining residual

motion does not exceed the boundaries seen here, and will not be discussed further.

Figure 144. Root-to-end controlled deployment simulation at T = 7.5 seconds.

Figure 145. Root-to-end controlled deployment simulation at T = 7.9 seconds.

Figure 146. Root-to-end controlled deployment simulation at T = 9.6 seconds.

Figure 148 shows the energy calculations from this simulation. The disparity

between the kinetic and strain energies is not as notable as the end-to-root deployment

because the root cells moved the entire structure radially throughout the simulation

like the uncontrolled deployment. Interestingly, the deployment envelope (Table 11)
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Figure 147. Root-to-end controlled deployment simulation at T = 10 seconds.

of this simulation is the smallest seen in this work. No doubt as a result of obtuse

angles obtained by some of the cells in the simulation. It is plain from these simulation

results, that a root-to-end deployment is not optimal. The root Cells that drive the

structure outwards controls the outermost Cells in a way that is simply harmful to the

structural members. Although it is possible to model more contacts in COMSOL to

avoid the geometry intersections seen here, the added computation time would not be

trivial. Furthermore, such a deployment scheme may not be worth the computational

cost to pursue. At the end of the day, perhaps a different control scheme needs to

be developed for this application in COMSOL. There are a variety of possibilities

that could be considered and made with the tools that COMSOL has to offer. Else,

the model would need to be geometrically modifed to avoid the bumping that would

occur between the batten frames if the spring-hinge moments were completely turned

off. The current model could be more strictly constrained to meed the demands of a

controlled model. However this would result in a cumbersome model that would take

significantly longer to solve.

4.6 Summary

There are many key ideas to take away from this Chapter. Section 4.2 showed how

an uncontrolled truss might deploy and gave an in-depth analysis on what happened
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Figure 148. End-to-root controlled deployment simulation energy.

Completed Deployment X Y Z
Upper Bound (m) 4.4710 6.0679 37.9799
Lower Bound (m) -4.4710 -2.6422 0

Uncontrolled Deployment X Y Z
Upper Bound (m) 4.4430 9.7763 37.8630
Lower Bound (m) -4.5435 -3.6698 0

Root-to-end Controlled Deployment X Y Z
Upper Bound (m) 4.4770 8.9678 37.7390
Lower Bound (m) -4.6206 -3.4089 0

Table 11. Uncontrolled and root-to-end deployment simulation deployment envelopes

throughout this deployment. The model that was created using the methods in

Chapter 3 performed as it should and showed that the geometry and cables were

modeled correctly. Remember that none of the motion paths were preordained, and

that the stowed model was created and simply released. Throughout the analysis

it was shown that COMSOL is able to detect high frequency events and adjust the

time steps in response to them. Different idiosyncrasies of the truss deployment were

found as well. It was explained that the deployment success of each Cell was highly

dependent on the geometry and motion of the rest of the structure. The summed

total energies of the simulation acted as one would expect throughout most of the

simulation. Towards the end, however, it was shown that the summed energy actually

increases. This is not representative of a closed system, and may be caused by an

overly general approximation of the strain energies in the system. Perhaps as a result

of this added energy, the transient motion of the deployed truss remained for the
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duration of the simulation. The end of this Section showed more of the output data

from the simulation in order to show how different aspects of the deploying truss

are related to each other. It was shown that COMSOL’s joints do indeed transfer

displacements throughout the model. Section 4.3 shows what happens when the

uncontrolled truss is placed in a rotating frame. Although the frame only rotated

for a small fraction of the simulation, it did have an effect on the longeron lockout

events. It was also pointed out here that due to the loose tolerance factors imposed

on the time-dependent solver, that only global motion was really being captured.

Section 4.4 ran a quick study on the effects of weak hinges on the deployment of the

truss arm. Through a lot of simulation data, it was found that if a weak hinge exists

in a bottom longeron, then the simulation will most likely fail. Cell 2 also proved

to be vital for the truss arm’s deployment success. Finally, Section 4.5 explores

how a truss arm deployment might be controlled and what effects the control would

have on the deployment. Unfortunately, the scheme created to control the truss did

not work as intended, and the truss’s deployment ran away from the time triggers.

The results from these simulations still proved valuable, however, as they once again

showed how simulations in COMSOL could be easily modified. Table 12 shows the

deployment envelopes for all of the simulations. Furthermore it was shown that even

a partially controlled simulation aided in curbing the kinetic energy of the system.

The second half of this Section showed why a root-to-end deployment sequence needs

to be carefully implemented. It was concluded that either a new methodology for

controlling the deployment should be developed, or that the current model should be

more strictly constrained. Either way, it was established that there exist a multitude

of possibilities inside COMSOL to approach this problem.
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Completed Deployment X Y Z
Upper Bound (m) 4.4710 6.0679 37.9799
Lower Bound (m) -4.4710 -2.6422 0

Uncontrolled Deployment X Y Z
Upper Bound (m) 4.4430 9.7763 37.8630
Lower Bound (m) -4.5435 -3.6698 0

5 Degrees per Minute Initial Rotation X Y Z
Upper Bound (m) 4.4283 9.8037 37.8550
Lower Bound (m) -4.5370 -3.6490 0

60 Degrees per Minute Initial Rotation X Y Z
Upper Bound (m) 4.4850 9.9063 37.8430
Lower Bound (m) -4.4801 -3.6472 0

Weak c1.nxpy.lglg Hinge X Y Z
Upper Bound (m) 4.4221 11.4660 37.8360
Lower Bound (m) -4.5671 -2.8143 0

Weak c1.nxny.lglg Hinge X Y Z
Upper Bound (m) 4.4088 11.5768 37.3200
Lower Bound (m) -4.5898 -2.8442 0

Weak c2.nxpy.lglg Hinge X Y Z
Upper Bound (m) 4.4157 10.0887 37.3610
Lower Bound (m) -4.5447 -2.7412 0

Weak c2.nxny.lglg Hinge X Y Z
Upper Bound (m) 4.4850 32.5646 36.5340
Lower Bound (m) -4.5216 -3.3617 0

Weak c3.nxpy.lglg Hinge X Y Z
Upper Bound (m) 4.4225 9.4141 37.7630
Lower Bound (m) -4.5197 -3.6866 0

Weak c3.nxny.lglg Hinge X Y Z
Upper Bound (m) 4.553 11.6904 37.8410
Lower Bound (m) -4.5239 -4.5239 0

Weak c4.nxpy.lglg Hinge X Y Z
Upper Bound (m) 4.4554 8.9432 37.7080
Lower Bound (m) -4.4677 -2.8025 0

Weak c4.nxny.lglg Hinge X Y Z
Upper Bound (m) 4.4306 11.1625 37.3080
Lower Bound (m) -4.5682 -2.7809 0

End-to-Root Controlled Deployment X Y Z
Upper Bound (m) 4.4620 12.4622 37.8560
Lower Bound (m) -4.5485 -3.3783 0

Root-to-End Controlled Deployment X Y Z
Upper Bound (m) 4.4770 8.9678 37.7390
Lower Bound (m) -4.6206 -3.4089 0

Table 12. Deployment envelopes for all simulations.
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V. Conclusions

5.1 Summary of Work

In summary, this work has simulated the deployment of a locking hinge truss

using FEM in COMSOL. The simulated truss comprises the partial structure of a

very large, sparse antenna aperture reflector. The aperture is designed to fit within

existing launch vehicle payload fairings and be deployed on orbit, where its large

diameter can reduce long range communications power requirements by an order

of magnitude. The truss’s deployment was simulated with multiple variations to

show not only how the model reacted globally to varied design parameters, but to

also demonstrate the capabilities of COMSOL’s implicit solver. The pursuit of this

simulation and the research involved was prompted by previous work done with the

Large Deployable Spare Aperture Reflector project.

A methodology has been presented here that creates 3D deployment simulations

from nominal 2D engineering designs. These designs are based on historical concepts

and hardware with exceptional flight heritage. The first major milestone in this work

was the choice of FEA solver software. It was determined that COMSOL was the best

match for this work due to its under-the-hood transparency, plethora of adjustable

components, and extensive knowledge base. From here, the methodology followed a

typical engineering path from geometry creation to simulation results and analysis.

This path is summarized as follows:

1. 3D geometry creation from 2D drawings

2. As-designed 3D geometry simplification to 3D simulation geometry

3. Creation of equivalent material properties for simplified geometry

4. Establishment of modeling shorthand nomenclature
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5. Importation, conditioning, meshing, material application, and physics setup of
geometry in COMSOL

6. Cable elements modeling

7. Probe declaration and solver configuration in COMSOL

8. Simulation results analysis and deployment envelope calculations

5.2 Analysis Conclusions

The uncontrolled simulation represents the most unconstrained model that de-

ploys in a spontaneous manner. Analysis of this simulation revealed many emergent

characteristics of the truss’s deployment. First of all, a relationship between the ge-

ometry configuration of the entire truss and an individual cell’s lockout prospects

were established. Due to the longer lower longerons of the cells, an upward motion

was experienced in the truss’s deployment that forced awkward or incomplete truss

deployments. Using a combination of COMSOL’s built-in energy measurements and

cable strain energies, it was shown that the kinetic energy of the truss was a major

factor in cell deployments. Although the summed total energy momentarily increases

in the simulation and is not realistic, the kinetic energy showed how cells closer to

the root of the truss could be pulled radially to lockout via momentum. Before, dur-

ing, and after the cells full deployment, the implicit solver utilized by COMSOL was

able to adjust the number of time steps used. This allowed the displacements of the

longerons during this critical period to be modeled precisely without burdening the

rest of the simulation with excessive time steps. The stresses resulting from these

displacements are only representative of a truss deployment, but showed that the

declared hinges throughout the model were transmitting the stress waves throughout

the model during the simulation. The second half of the simulation illustrated how

the transient motions of the structure cause it to sway unpredictably. Although the

added damping or the tension cables were necessary for successful deployments, it
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also proved to be a boon to the structure in this latter part of the simulation. Such

a necessary addition to the simulation may point to possible design space additions

for further iterations of this deployable structure.

The uncontrolled simulations placed into rotating frames hints at the added ca-

pabilities of COMSOL. Due to the nature of the changing moment of inertia of the

structure, the rotation was only present in the first two cell deployments. Although

the speed of rotation between the two simulations varies greatly, the differences in

their analyses were very similar. They both showed the same longeron velocity and

lockout times due to the small amount of damping present in the hinges, but the lock-

out stress was sometimes up to twice that of the original unconstrained deployment.

The added stress is most likely a result of the higher axial load from the centripetal

force present in the simulation. This stress also contributes to some observed har-

monic displacement within the longerons that is noticeable for the simulations in the

rotating frame. It was mentioned that the implicit solver may be able to even more

accurately track these displacements through the structure if given tighter tolerance

settings. The results from these simulations are far from conclusive, but also seem to

suggest that adding centripetal force to the simulation would not be beneficial for a

mechanism configured in this way.

Weakened hinges were placed throughout the structure to again challenge COM-

SOL’s solver as well as study the effect of manufacturing errors on the truss deploy-

ments. Of the eight simulations run, only half of them completed successfully. The

other half of the simulations’ deployments failed as the global motion was altered by

the weak hinge in such a way as to prevent the complete lockout of one or more hinges.

In most cases, the lower longeron hinges proved critical to the lockout success of the

truss cells. One case in particular, where one of the lower hinges was weakened in

Cell 2, showed that the resulting truss deployment was displaced 32 meters vertically.
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Such a large deployment envelope would most certainly compromise the deployment

of the entire antenna array. The rest of the simulations’ envelopes showed that typ-

ically the deployment of the truss arm does not exceed approximately 12 meters of

vertical motion with the presence of the weak hinges.

The controlled deployment simulations of the truss arm did not function entirely

as expected. Between concerns for computation time and geometry intersections, a

compromised control solution was put forward. However, the lessons learned from the

behavior exhibited without this solution were not expected, and are therefore of value

to the design of the truss mechanism. For example, the contact made between the

end fittings while the end trusses pushed off the root trusses is considerable, and if

not constrained properly could cause damage. It should also be noted that the control

scheme did reduce the total ratio of kinetic to strain energy present in the structure

during the simulation, and proves why controlled deployments are necessary. In the

future, an alternate control scheme should to be devised to more accurately model

the deployment of the as-designed truss.

It can be concluded from these analyses that the simulations presented are repre-

sentative of the deployment of the as-designed truss for the Large Deployable Sparse

Aperture Reflector. The simulation modeled here lacks the component detail needed

to establish definitive conclusions of the as-designed structure, but many key results

are useful for further research. The overall behavior of the system in response to an

uncontrolled deployment or parameter alterations hints at possible areas of concern as

well as new design considerations when moving forward. Although the design seems

simple, the kinetics of its deployment should not be understated.
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5.3 Broader Impact

The methodology presented in this paper applies not only to the Large Deployable

Sparse Aperture Reflector, but can also be extended to similar space structures. Such

structures are not built for Earth’s gravity and must be properly designed through

use of computer simulations before they are built. This work shows that solid body

simulations can be conducted in COMSOL and the results can make significant con-

tributions to the structure’s design. The resolution of the simulations performed are

low due to time and resource constraints, yet can be improved in the future due to

COMSOL’s proven scalability. Therefore, it can be said that this work contributes to

the study of large deployable space structures by providing a configurable deployment

simulation methodology. Through these studies, larger and more dependable deploy-

able space structures can be designed which will further humanity’s space exploration

efforts.

5.4 Future Work

The work presented here details a comprehensive method of modeling locking

truss deployments in COMSOL. As such, there are many aspects of the model that

need to be improved in order to continue contributing to the Large Deployable Sparse

Aperture Reflector project. These improvements include:

1. Study of geometric simplification effects on simulation results

2. Investigation of energy parameters to determine source of increasing energy in
the latter half of the simulation

3. Addition of truss cells to comprise the full eight cell truss arm

4. Optimization of design parameters using parametric sweeps in COMSOL

5. Inclusion of cable forces from center mast and adjacent arms
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6. Structural analysis of deployed truss cells to slewing maneuvers

In addition to the work that can be done to the existing model, future work may

also include the modeling of the complete reflector structure that may even include

component-level details. Once a full model is constructed, structural and environmen-

tal analyses can be conducted to determine the performance of the reflector on orbit.

Although a more powerful computing solution may be needed, a full simulation of

the as-designed geometry would undoubtedly further this concept’s future feasibility.
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VI. Appendix

6.1 Appendix A - MATLAB Code

Mesh Study Plots.

%% 141217 Mesh Study
% Dylan Van Dyne

clear all; close all; clc;

P = 100;
E = 34.892e9;
I = 5.2083e-7;
L = 9.5;
A = 0.05ˆ2;
rho = 32.3543;
disp exact = (P*(Lˆ3))/(48*(E)*(I));
w1 exact = (1/(2*pi))*((pi/L)ˆ2)*sqrt((E*I)/(rho*A))
w2 exact = (4/(2*pi))*((pi/L)ˆ2)*sqrt((E*I)/(rho*A))
% w3 exact = (8/(2*pi))*((pi/L)ˆ2)*sqrt((E*I)/(rho*A))
% w4 exact = (16/(2*pi))*((pi/L)ˆ2)*sqrt((E*I)/(rho*A))
% w5 exact = (32/(2*pi))*((pi/L)ˆ2)*sqrt((E*I)/(rho*A))
w3 exact = 74.177
w4 exact = 131.77
w5 exact = 205.67

tetmeshlin = [348 600 826 3595 4104;
708 1212 1632 4242 4914;
0.005564 0.011290 0.015557 0.045450 0.053525;
35.076 24.275 20.658 12.14 11.076;
143.53 96.033 80.248 48.478 43.377]';

for n = 1:length(tetmeshlin(:,3))
tetmeshlin(n,3) = abs(tetmeshlin(n,3)-disp exact)*100/abs(disp exact);

end
for n = 1:length(tetmeshlin(:,4))

tetmeshlin(n,4) = abs(tetmeshlin(n,4)-w1 exact)*100/abs(w1 exact);
end
for n = 1:length(tetmeshlin(:,5))

tetmeshlin(n,5) = abs(tetmeshlin(n,5)-w2 exact)*100/abs(w2 exact);
end

tetmeshquad = [125 164 202 228 348;
1014 1353 1683 2079 3159;
0.097919 0.098088 0.098173 0.098236 0.098276;
8.2621 8.2563 8.2534 8.2512 8.2498;
33.174 33.084 33.047 33.017 32.997;
75.247 74.766 74.529 74.351 74.240;
135.01 133.43 132.77 132.28 131.96;
214.01 210.23 208.39 207.01 206.15]';
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for n = 1:length(tetmeshquad(:,3))
tetmeshquad(n,3) = abs(tetmeshquad(n,3)-disp exact)*100/abs(disp exact);

end
for n = 1:length(tetmeshquad(:,4))

tetmeshquad(n,4) = abs(tetmeshquad(n,4)-w1 exact)*100/abs(w1 exact);
end
for n = 1:length(tetmeshquad(:,5))

tetmeshquad(n,5) = abs(tetmeshquad(n,5)-w2 exact)*100/abs(w2 exact);
end
for n = 1:length(tetmeshquad(:,6))

tetmeshquad(n,6) = abs(tetmeshquad(n,6)-w3 exact)*100/abs(w3 exact);
end
for n = 1:length(tetmeshquad(:,7))

tetmeshquad(n,7) = abs(tetmeshquad(n,7)-w4 exact)*100/abs(w4 exact);
end
for n = 1:length(tetmeshquad(:,8))

tetmeshquad(n,8) = abs(tetmeshquad(n,8)-w5 exact)*100/abs(w5 exact);
end

tetmeshcub = [125 164 202 228 348;
2754 3663 4551 5220 8400;
0.098299 0.098299 0.098299 0.098298 0.098298;
8.249 8.249 8.249 8.249 8.249;
32.986 32.986 32.986 32.985 32.985;
74.183 74.179 74.178 74.177 74.177;
131.80 131.78 131.77 131.77 131.77;
205.80 205.72 205.69 205.68 205.67]';

for n = 1:length(tetmeshcub(:,3))
tetmeshcub(n,3) = abs(tetmeshcub(n,3)-disp exact)*100/abs(disp exact);

end
for n = 1:length(tetmeshcub(:,4))

tetmeshcub(n,4) = abs(tetmeshcub(n,4)-w1 exact)*100/abs(w1 exact);
end
for n = 1:length(tetmeshcub(:,5))

tetmeshcub(n,5) = abs(tetmeshcub(n,5)-w2 exact)*100/abs(w2 exact);
end
for n = 1:length(tetmeshcub(:,6))

tetmeshcub(n,6) = abs(tetmeshcub(n,6)-w3 exact)*100/abs(w3 exact);
end
for n = 1:length(tetmeshcub(:,7))

tetmeshcub(n,7) = abs(tetmeshcub(n,7)-w4 exact)*100/abs(w4 exact);
end
for n = 1:length(tetmeshcub(:,8))

tetmeshcub(n,8) = abs(tetmeshcub(n,8)-w5 exact)*100/abs(w5 exact);
end

hexmeshlin = [10 14 20 30 50;
132 180 252 372 612;
0.0005416 0.0010559 0.0021311 0.0046685 0.011958;
112.05 79.925 56.139 37.886 23.658;
459.14 323.62 225.87 151.91 94.697]';

for n = 1:length(hexmeshlin(:,3))
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hexmeshlin(n,3) = abs(hexmeshlin(n,3)-disp exact)*100/abs(disp exact);
end
for n = 1:length(hexmeshlin(:,4))

hexmeshlin(n,4) = abs(hexmeshlin(n,4)-w1 exact)*100/abs(w1 exact);
end
for n = 1:length(hexmeshlin(:,5))

hexmeshlin(n,5) = abs(hexmeshlin(n,5)-w2 exact)*100/abs(w2 exact);
end

hexmeshquad = [2 4 6 8 10 14 20;
135 243 351 459 567 783 1107;
0.073735 0.092182 0.095594 0.096789 0.097341 0.097822 0.098076;
9.1544 8.4639 8.3431 8.3014 8.2821 8.2655 8.2567;
36.606 36.589 34.524 33.833 33.519 33.25 33.108
200 92.264 82.221 78.55 76.912 75.522 74.8;
300 146.17 157.61 145.91 140.54 136.05 133.74;
1500 1099.5 260.38 240.69 227.44 216.2 210.5]';

for n = 1:length(hexmeshquad(:,3))
hexmeshquad(n,3) = abs(hexmeshquad(n,3)-disp exact)*100/abs(disp exact);

end
for n = 1:length(hexmeshquad(:,4))

hexmeshquad(n,4) = abs(hexmeshquad(n,4)-w1 exact)*100/abs(w1 exact);
end
for n = 1:length(hexmeshquad(:,5))

hexmeshquad(n,5) = abs(hexmeshquad(n,5)-w2 exact)*100/abs(w2 exact);
end
for n = 1:length(hexmeshquad(:,6))

hexmeshquad(n,6) = abs(hexmeshquad(n,6)-w3 exact)*100/abs(w3 exact);
end
for n = 1:length(hexmeshquad(:,7))

hexmeshquad(n,7) = abs(hexmeshquad(n,7)-w4 exact)*100/abs(w4 exact);
end
for n = 1:length(hexmeshquad(:,8))

hexmeshquad(n,8) = abs(hexmeshquad(n,8)-w5 exact)*100/abs(w5 exact);
end

hexmeshcub = [2 4 6 8 10;
336 624 912 1200 1488;
0.098299 0.098299 0.098299 0.098299 0.098299;
8.82815 8.2511 8.2494 8.2491 8.2491;
36.594 33.114 33.012 32.994 32.989;
91.805 75.515 74.462 74.268 74.214;
167.2 145.97 133.28 132.26 131.97;
500 231.43 210.43 207.49 206.43]';

for n = 1:length(hexmeshcub(:,3))
hexmeshcub(n,3) = abs(hexmeshcub(n,3)-disp exact)*100/abs(disp exact);

end
for n = 1:length(hexmeshcub(:,4))

hexmeshcub(n,4) = abs(hexmeshcub(n,4)-w1 exact)*100/abs(w1 exact);
end
for n = 1:length(hexmeshcub(:,5))

hexmeshcub(n,5) = abs(hexmeshcub(n,5)-w2 exact)*100/abs(w2 exact);
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end
for n = 1:length(hexmeshcub(:,6))

hexmeshcub(n,6) = abs(hexmeshcub(n,6)-w3 exact)*100/abs(w3 exact);
end
for n = 1:length(hexmeshcub(:,7))

hexmeshcub(n,7) = abs(hexmeshcub(n,7)-w4 exact)*100/abs(w4 exact);
end
for n = 1:length(hexmeshcub(:,8))

hexmeshcub(n,8) = abs(hexmeshcub(n,8)-w5 exact)*100/abs(w5 exact);
end

figure;
loglog( tetmeshcub(:,2),tetmeshcub(:,3),hexmeshcub(:,2),hexmeshcub(:,3),...

tetmeshquad(:,2),tetmeshquad(:,3),hexmeshquad(:,2),hexmeshquad(:,3),...
tetmeshlin(:,2),tetmeshlin(:,3),hexmeshlin(:,2),hexmeshlin(:,3))

xlabel('Number of Degrees of Freedom')
ylabel('Percent Error from Exact Answer')
legend('Cubic Tet Mesh','Cubic Hex Mesh','Quadratic Tet Mesh',...

'Quadratic Hex Mesh','Linear Tet Mesh','Linear Hex Mesh')
title('Solution Efficiency: Beam Deflection (0.98 meters)')

figure;
loglog( tetmeshcub(:,2),tetmeshcub(:,4),hexmeshcub(:,2),hexmeshcub(:,4),...

tetmeshquad(:,2),tetmeshquad(:,4),hexmeshquad(:,2),hexmeshquad(:,4),...
tetmeshlin(:,2),tetmeshlin(:,4),hexmeshlin(:,2),hexmeshlin(:,4))

xlabel('Number of Degrees of Freedom')
ylabel('Percent Error from Exact Answer')
legend('Cubic Tet Mesh','Cubic Hex Mesh','Quadratic Tet Mesh',...

'Quadratic Hex Mesh','Linear Tet Mesh','Linear Hex Mesh')
title('Solution Efficiency: Beam 1st Natural Frequency (8.25 Hz)')

figure;
loglog( tetmeshcub(:,2),tetmeshcub(:,5),hexmeshcub(:,2),hexmeshcub(:,5),...

tetmeshquad(:,2),tetmeshquad(:,5),hexmeshquad(:,2),hexmeshquad(:,5),...
tetmeshlin(:,2),tetmeshlin(:,5),hexmeshlin(:,2),hexmeshlin(:,5))

xlabel('Number of Degrees of Freedom')
ylabel('Percent Error from Exact Answer')
legend('Cubic Tet Mesh','Cubic Hex Mesh','Quadratic Tet Mesh',...

'Quadratic Hex Mesh','Linear Tet Mesh','Linear Hex Mesh')
title('Solution Efficiency: Beam 2nd Natural Frequency (32.99 Hz)')

figure;
loglog(tetmeshcub(:,2),tetmeshcub(:,6),hexmeshcub(:,2),hexmeshcub(:,6),...

tetmeshquad(:,2),tetmeshquad(:,6),hexmeshquad(:,2),hexmeshquad(:,6))
xlabel('Number of Degrees of Freedom')
ylabel('Percent Error from Exact Answer')
legend('Cubic Tet Mesh','Cubic Hex Mesh','Quadratic Tet Mesh',...

'Quadratic Hex Mesh')
title('Solution Efficiency: Beam 3rd Natural Frequency (~74.18 Hz)')

figure;
loglog( tetmeshcub(:,2),tetmeshcub(:,7),hexmeshcub(:,2),hexmeshcub(:,7),...
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tetmeshquad(:,2),tetmeshquad(:,7),hexmeshquad(:,2),hexmeshquad(:,7))
xlabel('Number of Degrees of Freedom')
ylabel('Percent Error from Exact Answer')
legend('Cubic Tet Mesh','Cubic Hex Mesh','Quadratic Tet Mesh',...

'Quadratic Hex Mesh')
title('Solution Efficiency: Beam 4th Natural Frequency (~131.77 Hz)')

figure;
loglog( tetmeshcub(:,2),tetmeshcub(:,8),hexmeshcub(:,2),hexmeshcub(:,8),...

tetmeshquad(:,2),tetmeshquad(:,8),hexmeshquad(:,2),hexmeshquad(:,8))
xlabel('Number of Degrees of Freedom')
ylabel('Percent Error from Exact Answer')
legend('Cubic Tet Mesh','Cubic Hex Mesh','Quadratic Tet Mesh',...

'Quadratic Hex Mesh')
title('Solution Efficiency: Beam 5th Natural Frequency (~205.67 Hz)')

% Upon viewing the graphs, goal will be to aim for a discretization in the
% final model similar to the Coarser Quadratic Hex Mesh, which is the 3rd
% row in the hexmeshquad matrix.

Deployment Envelope Calculations.

%% Displacement Envelope of Four Cell Truss Simulation
% Dylan Van Dyne 141219

clear all; clc; close all;

load('TrussC1C4 R3 disp.mat');
len = length(C1C4 R3 disp)/24;
h = 5.31;
w = 8.74;

% Cell 4 extrapolations
c4pxny = zeros(len,6);
c4nxpy = zeros(len,6);
c4pxny(:,1) = (w/2)+C1C4 R3 disp(1:24:end)';
c4pxny(:,2) = -(h/2)+C1C4 R3 disp(2:24:end)';
c4pxny(:,3) = C1C4 R3 disp(3:24:end)';
c4pxny(:,4) = C1C4 R3 disp(4:24:end)';
c4pxny(:,5) = C1C4 R3 disp(5:24:end)';
c4pxny(:,6) = C1C4 R3 disp(6:24:end)';
c4nxpy(:,1) = c4pxny(:,1)-w*cos(c4pxny(:,5));
c4nxpy(:,2) = c4pxny(:,2)+h*cos(c4pxny(:,4));
c4nxpy(:,3) = c4pxny(:,3)+h*sin(c4pxny(:,4));

% Cell 3 extrapolations
c3pxny = zeros(len,6);
c3nxpy = zeros(len,6);
c3pxny(:,1) = (w/2)+C1C4 R3 disp(7:24:end)';
c3pxny(:,2) = -(h/2)+C1C4 R3 disp(8:24:end)';
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c3pxny(:,3) = C1C4 R3 disp(9:24:end)';
c3pxny(:,4) = C1C4 R3 disp(10:24:end)';
c3pxny(:,5) = C1C4 R3 disp(11:24:end)';
c3pxny(:,6) = C1C4 R3 disp(12:24:end)';
c3nxpy(:,1) = c3pxny(:,1)-w*cos(c3pxny(:,5));
c3nxpy(:,2) = c3pxny(:,2)+h*cos(c3pxny(:,4));
c3nxpy(:,3) = c3pxny(:,3)+h*sin(c3pxny(:,4));

% Cell 2 extrapolations
c2pxny = zeros(len,6);
c2nxpy = zeros(len,6);
c2pxny(:,1) = (w/2)+C1C4 R3 disp(13:24:end)';
c2pxny(:,2) = -(h/2)+C1C4 R3 disp(14:24:end)';
c2pxny(:,3) = C1C4 R3 disp(15:24:end)';
c2pxny(:,4) = C1C4 R3 disp(16:24:end)';
c2pxny(:,5) = C1C4 R3 disp(17:24:end)';
c2pxny(:,6) = C1C4 R3 disp(18:24:end)';
c2nxpy(:,1) = c2pxny(:,1)-w*cos(c2pxny(:,5));
c2nxpy(:,2) = c2pxny(:,2)+h*cos(c2pxny(:,4));
c2nxpy(:,3) = c2pxny(:,3)+h*sin(c2pxny(:,4));

% Cell 1 extrapolations
c1pxny = zeros(len,6);
c1nxpy = zeros(len,6);
c1pxny(:,1) = (w/2)+C1C4 R3 disp(19:24:end)';
c1pxny(:,2) = -(h/2)+C1C4 R3 disp(20:24:end)';
c1pxny(:,3) = C1C4 R3 disp(21:24:end)';
c1pxny(:,4) = C1C4 R3 disp(22:24:end)';
c1pxny(:,5) = C1C4 R3 disp(23:24:end)';
c1pxny(:,6) = C1C4 R3 disp(24:24:end)';
c1nxpy(:,1) = c1pxny(:,1)-w*cos(c1pxny(:,5));
c1nxpy(:,2) = c1pxny(:,2)+h*cos(c1pxny(:,4));
c1nxpy(:,3) = c1pxny(:,3)+h*sin(c1pxny(:,4));

% Maximum/Minimum solution for bounding box
xMax = [max(c1pxny(:,1)) max(c2pxny(:,1)) max(c3pxny(:,1)) max(c4pxny(:,1))];
xMin = [min(c1nxpy(:,1)) min(c2nxpy(:,1)) min(c3nxpy(:,1)) min(c4nxpy(:,1))];
xUpperBound = max(xMax)
xLowerBound = min(xMin)
yMax = [max(c1nxpy(:,2)) max(c2nxpy(:,2)) max(c3nxpy(:,2)) max(c4nxpy(:,2))];
yMin = [min(c1pxny(:,2)) min(c2pxny(:,2)) min(c3pxny(:,2)) min(c4pxny(:,2))];
yUpperBound = max(yMax)
yLowerBound = min(yMin)
zMax = [max(c1pxny(:,3)) max(c2pxny(:,3)) max(c3pxny(:,3)) max(c4pxny(:,3))...

max(c1nxpy(:,3)) max(c2nxpy(:,3)) max(c3nxpy(:,3)) max(c4nxpy(:,3))];
zMin = [min(c1pxny(:,3)) min(c2pxny(:,3)) min(c3pxny(:,3)) min(c4pxny(:,3))...

min(c1nxpy(:,3)) min(c2nxpy(:,3)) min(c3nxpy(:,3)) min(c4nxpy(:,3))];
zUpperBound = max(zMax)
zLowerBound = min(zMin)

Cable Length Calculations, Completed Deployment Envelope, and Weak-
ened Hinge Visualization.
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%% Cable Lengths Calculations
% Dylan Van Dyne 10 Dec 2014

clear all; clc; close all;

%% Calculating Cable Lengths
% Assuming the desired resting tension for these cables is 10N, with 25
% N/m spring constant, so the x0 is set to 0.2 meters. Setting back
% corners of cells to 90 degrees with this method.

F = 10; % Desired force
k = 25; % Cable spring constant
str = F/k % Desired stretch in cables

vb = 5.310-0.0255; % Vertical batten length (adjusted for corners)
hb = 8.74-.102; % Horizontal batten length (adjusted for corners)
c1 top = 4.583*2; % Cell 1 top length (adjusted for joints)
c1 bot = 4.7215*2; % Cell 1 bottom length (adjusted for joints)
c1 nypy = sqrt(vbˆ2+c1 topˆ2)-str
c1 pyny = sqrt(vbˆ2+c1 botˆ2)-str
c1 py = sqrt(hbˆ2+c1 topˆ2)-str
c1 ny = sqrt(hbˆ2+c1 botˆ2)-str
c2 top = 4.598*2;
c2 bot = 4.7385*2;
c2 nypy = sqrt(vbˆ2+c2 topˆ2)-str
c2 pyny = sqrt(vbˆ2+c2 botˆ2)-str
c2 py = sqrt(hbˆ2+c2 topˆ2)-str
c2 ny = sqrt(hbˆ2+c2 botˆ2)-str
c3 top = 4.6285*2;
c3 bot = 4.7725*2;
c3 nypy = sqrt(vbˆ2+c3 topˆ2)-str
c3 pyny = sqrt(vbˆ2+c3 botˆ2)-str
c3 py = sqrt(hbˆ2+c3 topˆ2)-str
c3 ny = sqrt(hbˆ2+c3 botˆ2)-str
c4 top = 4.6735*2;
c4 bot = 4.823*2;
c4 nypy = sqrt(vbˆ2+c4 topˆ2)-str
c4 pyny = sqrt(vbˆ2+c4 botˆ2)-str
c4 py = sqrt(hbˆ2+c4 topˆ2)-str
c4 ny = sqrt(hbˆ2+c4 botˆ2)-str

%% Determining Completed Geometry Envelope
xmax = (8.74+.202)/2
lg adj = 0.051; % Longeron corner
theta f1 = atand(vb/(c1 bot-c1 top)); % Forward angle of cell
theta c1r = 90-theta f1; % Cell 1 raise angle
c2 zdist = (lg adj+c2 bot)*cosd(theta c1r); % Adjusted y distance for Cell 2
theta f2 = atand(vb/(c2 bot-c2 top));
theta c2r = 90-theta f2+theta c1r;
c3 zdist = (lg adj+c3 bot)*cosd(theta c2r);
theta f3 = atand(vb/(c3 bot-c3 top));
theta c3r = 90-theta f3+theta c2r+theta c1r;
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c4 zdist = (lg adj+c4 bot)*cosd(theta c3r);
c2 ydist = c2 top*sind(theta c1r);
c3 ydist = c3 top*sind(theta c2r);
c4 ydist = c4 top*sind(theta c3r);
ymax = vb/2+c2 ydist+c3 ydist+c4 ydist
zmax = c1 bot+c2 zdist+c3 zdist+c4 zdist

%% Draw Deployed Truss Arm
figure;
c1z = [0 0 c1 bot c1 top 0];
c1y = [vb/2 -vb/2 -vb/2 vb/2 vb/2];
c2 blx = c1 bot;
c2 bly = -vb/2;
c2 tlx = c1 top;
c2 tly = vb/2;
c2 trx = c1 top+c2 top*cosd(theta c1r);
c2 try = vb/2+c2 top*sind(theta c1r);
c2 brx = c1 bot+c2 bot*cosd(theta c1r);
c2 bry = -vb/2+c2 bot*sind(theta c1r);
c2z = [c2 blx c2 tlx c2 trx c2 brx c2 blx];
c2y = [c2 bly c2 tly c2 try c2 bry c2 bly];
c3 blx = c2 brx;
c3 bly = c2 bry;
c3 tlx = c2 trx;
c3 tly = c2 try;
c3 trx = c2 trx+c3 top*cosd(theta c2r);
c3 try = c2 try+c3 top*sind(theta c2r);
c3 brx = c2 brx+c3 bot*cosd(theta c2r);
c3 bry = c2 bry+c3 bot*sind(theta c2r);
c3z = [c3 blx c3 tlx c3 trx c3 brx c3 blx];
c3y = [c3 bly c3 tly c3 try c3 bry c3 bly];
c4 blx = c3 brx;
c4 bly = c3 bry;
c4 tlx = c3 trx;
c4 tly = c3 try;
c4 trx = c3 trx+c4 top*cosd(theta c3r);
c4 try = c3 try+c4 top*sind(theta c3r);
c4 brx = c3 brx+c4 bot*cosd(theta c3r);
c4 bry = c3 bry+c4 bot*sind(theta c3r);
c4z = [c4 blx c4 tlx c4 trx c4 brx c4 blx];
c4y = [c4 bly c4 tly c4 try c4 bry c4 bly];
% C1 Upper
subplot(4,2,1)
hold on
title('Weak Hinge in an Upper Longeron of Cell 1 (Success)')
plot(c1z(1:2),c1y(1:2),'k')
plot(c1z(4:5),c1y(4:5),':b')
plot(c1z(3:4),c1y(3:4),'k')
plot(c1z(2:3),c1y(2:3),'b')
plot(c2z(2:3),c2y(2:3),'b')
plot(c2z(3:4),c2y(3:4),'k')
plot(c2z(4:5),c2y(4:5),'b','LineWidth',2)
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plot(c3z(2:3),c3y(2:3),'b')
plot(c3z(3:4),c3y(3:4),'k')
plot(c3z(4:5),c3y(4:5),'b','LineWidth',3)
plot(c4z(2:3),c4y(2:3),'b')
plot(c4z(3:4),c4y(3:4),'k')
plot(c4z(4:5),c4y(4:5),'b','LineWidth',6)
axis('equal')
axis([0 40 -5 10])
xlabel('Z Axis (m)')
ylabel('Y Axis (m)')
hold off
% C1 Lower
subplot(4,2,2)
hold on
title('Weak Hinge in a Lower Longeron of Cell 1 (Fail)')
plot(c1z(1:2),c1y(1:2),'k')
plot(c1z(4:5),c1y(4:5),'r')
plot(c1z(3:4),c1y(3:4),'k')
plot(c1z(2:3),c1y(2:3),':r')
plot(c2z(2:3),c2y(2:3),'r')
plot(c2z(3:4),c2y(3:4),'k')
plot(c2z(4:5),c2y(4:5),'r','LineWidth',2)
plot(c3z(2:3),c3y(2:3),'r')
plot(c3z(3:4),c3y(3:4),'k')
plot(c3z(4:5),c3y(4:5),'r','LineWidth',3)
plot(c4z(2:3),c4y(2:3),'r')
plot(c4z(3:4),c4y(3:4),'k')
plot(c4z(4:5),c4y(4:5),'w')
axis('equal')
axis([0 40 -5 10])
xlabel('Z Axis (m)')
ylabel('Y Axis (m)')
hold off
% C2 Upper
subplot(4,2,3)
hold on
title('Weak Hinge in an Upper Longeron of Cell 2 (Fail)')
plot(c1z(1:2),c1y(1:2),'k')
plot(c1z(4:5),c1y(4:5),'r')
plot(c1z(3:4),c1y(3:4),'k')
plot(c1z(2:3),c1y(2:3),'r')
plot(c2z(2:3),c2y(2:3),':r','LineWidth',2)
plot(c2z(3:4),c2y(3:4),'k')
plot(c2z(4:5),c2y(4:5),'r')
plot(c3z(2:3),c3y(2:3),'r')
plot(c3z(3:4),c3y(3:4),'k')
plot(c3z(4:5),c3y(4:5),'r','LineWidth',3)
plot(c4z(2:3),c4y(2:3),'r')
plot(c4z(3:4),c4y(3:4),'k')
plot(c4z(4:5),c4y(4:5),'w')
axis('equal')
axis([0 40 -5 10])
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xlabel('Z Axis (m)')
ylabel('Y Axis (m)')
hold off
% C2 Lower
subplot(4,2,4)
hold on
title('Weak Hinge in a Lower Longeron of Cell 2 (Fail)')
plot(c1z(1:2),c1y(1:2),'k')
plot(c1z(4:5),c1y(4:5),'w')
plot(c1z(3:4),c1y(3:4),'k')
plot(c1z(2:3),c1y(2:3),'r')
plot(c2z(2:3),c2y(2:3),'r')
plot(c2z(3:4),c2y(3:4),'k')
plot(c2z(4:5),c2y(4:5),':r','LineWidth',2)
plot(c3z(2:3),c3y(2:3),'r','LineWidth',2)
plot(c3z(3:4),c3y(3:4),'k')
plot(c3z(4:5),c3y(4:5),'r','LineWidth',4)
plot(c4z(2:3),c4y(2:3),'r')
plot(c4z(3:4),c4y(3:4),'k')
plot(c4z(4:5),c4y(4:5),'w')
axis('equal')
axis([0 40 -5 10])
xlabel('Z Axis (m)')
ylabel('Y Axis (m)')
hold off
% C3 Upper
subplot(4,2,5)
hold on
title('Weak Hinge in an Upper Longeron of Cell 3 (Success)')
plot(c1z(1:2),c1y(1:2),'k')
plot(c1z(4:5),c1y(4:5),'b')
plot(c1z(3:4),c1y(3:4),'k')
plot(c1z(2:3),c1y(2:3),'b')
plot(c2z(2:3),c2y(2:3),'b')
plot(c2z(3:4),c2y(3:4),'k')
plot(c2z(4:5),c2y(4:5),'b','LineWidth',2)
plot(c3z(2:3),c3y(2:3),':b','LineWidth',2)
plot(c3z(3:4),c3y(3:4),'k')
plot(c3z(4:5),c3y(4:5),'b')
plot(c4z(2:3),c4y(2:3),'b')
plot(c4z(3:4),c4y(3:4),'k')
plot(c4z(4:5),c4y(4:5),'b','LineWidth',6)
axis('equal')
axis([0 40 -5 10])
xlabel('Z Axis (m)')
ylabel('Y Axis (m)')
hold off
% C3 Lower
subplot(4,2,6)
hold on
title('Weak Hinge in a Lower Longeron of Cell 3 (Success)')
plot(c1z(1:2),c1y(1:2),'k')
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plot(c1z(4:5),c1y(4:5),'b')
plot(c1z(3:4),c1y(3:4),'k')
plot(c1z(2:3),c1y(2:3),'b')
plot(c2z(2:3),c2y(2:3),'b')
plot(c2z(3:4),c2y(3:4),'k')
plot(c2z(4:5),c2y(4:5),'b')
plot(c3z(2:3),c3y(2:3),'b')
plot(c3z(3:4),c3y(3:4),'k')
plot(c3z(4:5),c3y(4:5),':b','LineWidth',3)
plot(c4z(2:3),c4y(2:3),'b')
plot(c4z(3:4),c4y(3:4),'k')
plot(c4z(4:5),c4y(4:5),'b')
axis('equal')
axis([0 40 -5 10])
xlabel('Z Axis (m)')
ylabel('Y Axis (m)')
hold off
% C4 Upper
subplot(4,2,7)
hold on
title('Weak Hinge in an Upper Longeron of Cell 4 (Success)')
plot(c1z(1:2),c1y(1:2),'k')
plot(c1z(4:5),c1y(4:5),'b')
plot(c1z(3:4),c1y(3:4),'k')
plot(c1z(2:3),c1y(2:3),'b')
plot(c2z(2:3),c2y(2:3),'b')
plot(c2z(3:4),c2y(3:4),'k')
plot(c2z(4:5),c2y(4:5),'b','LineWidth',2)
plot(c3z(2:3),c3y(2:3),'b')
plot(c3z(3:4),c3y(3:4),'k')
plot(c3z(4:5),c3y(4:5),'b','LineWidth',4)
plot(c4z(2:3),c4y(2:3),':b','LineWidth',4)
plot(c4z(3:4),c4y(3:4),'k')
plot(c4z(4:5),c4y(4:5),'b')
axis('equal')
axis([0 40 -5 10])
xlabel('Z Axis (m)')
ylabel('Y Axis (m)')
hold off
% C4 Lower
subplot(4,2,8)
hold on
title('Weak Hinge in a Lower Longeron of Cell 4 (Fail)')
plot(c1z(1:2),c1y(1:2),'k')
plot(c1z(4:5),c1y(4:5),'r')
plot(c1z(3:4),c1y(3:4),'k')
plot(c1z(2:3),c1y(2:3),'r')
plot(c2z(2:3),c2y(2:3),'r')
plot(c2z(3:4),c2y(3:4),'k')
plot(c2z(4:5),c2y(4:5),'r','LineWidth',2)
plot(c3z(2:3),c3y(2:3),'r')
plot(c3z(3:4),c3y(3:4),'k')
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plot(c3z(4:5),c3y(4:5),'r','LineWidth',3)
plot(c4z(2:3),c4y(2:3),'r')
plot(c4z(3:4),c4y(3:4),'k')
plot(c4z(4:5),c4y(4:5),'w')
axis('equal')
axis([0 40 -5 10])
xlabel('Z Axis (m)')
ylabel('Y Axis (m)')
hold off

6.2 Appendix B - Simulation Import Files Examples

Simulation Parameter Input File.

ks 5 Spring Constant
thl 3.14 Locking Angle
k 50 Cable Spring Constant
c 5 Cable Damping Constant
l.c1.nypy 10.3802
l.c1.pyny 10.6211
l.c1.py 12.3949
l.c1.ny 12.5979
l.c2.nypy 10.4062
l.c2.pyny 10.6508
l.c2.py 12.4167
l.c2.ny 12.6230
l.c3.nypy 10.4592
l.c3.pyny 10.7102
l.c3.py 12.4612
l.c3.ny 12.6733
l.c4.nypy 10.5374
l.c4.pyny 10.7987
l.c4.py 12.5272
l.c4.ny 12.7484

Truss Cell 1 Cable File.

mbd.dsj1.xsx mbd.att6.xcx
mbd.dsj1.xsy mbd.att6.xcy
mbd.dsj1.xsz mbd.att6.xcz
mbd.dsj1.xdx mbd.att7.xcx
mbd.dsj1.xdy mbd.att7.xcy
mbd.dsj1.xdz mbd.att7.xcz
mbd.dsj1.uc.src mbd.att6.u
mbd.dsj1.vc.src mbd.att6.v
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mbd.dsj1.wc.src mbd.att6.w
mbd.dsj1.uc.dest mbd.att7.u
mbd.dsj1.vc.dest mbd.att7.v
mbd.dsj1.wc.dest mbd.att7.w
c1.NXnypy.dist sqrt((mbd.dsj1.xsx+mbd.dsj1.uc.src-mbd.dsj1.xdx-mbd.dsj1.uc.dest)ˆ2
+(mbd.dsj1.xsy+mbd.dsj1.vc.src-mbd.dsj1.xdy-mbd.dsj1.vc.dest)ˆ2
+(mbd.dsj1.xsz+mbd.dsj1.wc.src-mbd.dsj1.xdz-mbd.dsj1.wc.dest)ˆ2+eps)
c1.NXnypy.distx (mbd.dsj1.xsx+mbd.dsj1.uc.src-mbd.dsj1.xdx-mbd.dsj1.uc.dest)
/c1.NXnypy.dist
c1.NXnypy.disty (mbd.dsj1.xsy+mbd.dsj1.vc.src-mbd.dsj1.xdy-mbd.dsj1.vc.dest)
/c1.NXnypy.dist
c1.NXnypy.distz (mbd.dsj1.xsz+mbd.dsj1.wc.src-mbd.dsj1.xdz-mbd.dsj1.wc.dest)
/c1.NXnypy.dist
c1.NXnypy.damp d(c1.NXnypy.dist,TIME)
c1.NXnypy.sw c1.NXnypy.dist¿l.c1.nypy
c1.NXnypy.f (k*(l.c1.nypy-c1.NXnypy.dist)
-c*(c1.NXnypy.damp¿0)*c1.NXnypy.damp)*c1.NXnypy.sw
c1.NXnypy.Ws c1.NXnypy.sw*.5*k*(l.c1.nypy-c1.NXnypy.dist)ˆ2
c1.NXnypy.fx c1.NXnypy.f*c1.NXnypy.distx
c1.NXnypy.fy c1.NXnypy.f*c1.NXnypy.disty
c1.NXnypy.fz c1.NXnypy.f*c1.NXnypy.distz
mbd.dsj2.xsx mbd.att12.xcx
mbd.dsj2.xsy mbd.att12.xcy
mbd.dsj2.xsz mbd.att12.xcz
mbd.dsj2.xdx mbd.att1.xcx
mbd.dsj2.xdy mbd.att1.xcy
mbd.dsj2.xdz mbd.att1.xcz
mbd.dsj2.uc.src mbd.att12.u
mbd.dsj2.vc.src mbd.att12.v
mbd.dsj2.wc.src mbd.att12.w
mbd.dsj2.uc.dest mbd.att1.u
mbd.dsj2.vc.dest mbd.att1.v
mbd.dsj2.wc.dest mbd.att1.w
c1.NXpyny.dist sqrt((mbd.dsj2.xsx+mbd.dsj2.uc.src-mbd.dsj2.xdx-mbd.dsj2.uc.dest)ˆ2
+(mbd.dsj2.xsy+mbd.dsj2.vc.src-mbd.dsj2.xdy-mbd.dsj2.vc.dest)ˆ2
+(mbd.dsj2.xsz+mbd.dsj2.wc.src-mbd.dsj2.xdz-mbd.dsj2.wc.dest)ˆ2+eps)
c1.NXpyny.distx (mbd.dsj2.xsx+mbd.dsj2.uc.src-mbd.dsj2.xdx-mbd.dsj2.uc.dest)
/c1.NXpyny.dist
c1.NXpyny.disty (mbd.dsj2.xsy+mbd.dsj2.vc.src-mbd.dsj2.xdy-mbd.dsj2.vc.dest)
/c1.NXpyny.dist
c1.NXpyny.distz (mbd.dsj2.xsz+mbd.dsj2.wc.src-mbd.dsj2.xdz-mbd.dsj2.wc.dest)
/c1.NXpyny.dist
c1.NXpyny.damp d(c1.NXpyny.dist,TIME)
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c1.NXpyny.sw c1.NXpyny.dist¿l.c1.pyny
c1.NXpyny.f (k*(l.c1.pyny-c1.NXpyny.dist)
-c*(c1.NXpyny.damp¿0)*c1.NXpyny.damp)*c1.NXpyny.sw
c1.NXpyny.Ws c1.NXpyny.sw*.5*k*(l.c1.pyny-c1.NXpyny.dist)ˆ2
c1.NXpyny.fx c1.NXpyny.f*c1.NXpyny.distx
c1.NXpyny.fy c1.NXpyny.f*c1.NXpyny.disty
c1.NXpyny.fz c1.NXpyny.f*c1.NXpyny.distz
mbd.dsj3.xsx mbd.att18.xcx
mbd.dsj3.xsy mbd.att18.xcy
mbd.dsj3.xsz mbd.att18.xcz
mbd.dsj3.xdx mbd.att19.xcx
mbd.dsj3.xdy mbd.att19.xcy
mbd.dsj3.xdz mbd.att19.xcz
mbd.dsj3.uc.src mbd.att18.u
mbd.dsj3.vc.src mbd.att18.v
mbd.dsj3.wc.src mbd.att18.w
mbd.dsj3.uc.dest mbd.att19.u
mbd.dsj3.vc.dest mbd.att19.v
mbd.dsj3.wc.dest mbd.att19.w
c1.PXnypy.dist sqrt((mbd.dsj3.xsx+mbd.dsj3.uc.src-mbd.dsj3.xdx-mbd.dsj3.uc.dest)ˆ2
+(mbd.dsj3.xsy+mbd.dsj3.vc.src-mbd.dsj3.xdy-mbd.dsj3.vc.dest)ˆ2
+(mbd.dsj3.xsz+mbd.dsj3.wc.src-mbd.dsj3.xdz-mbd.dsj3.wc.dest)ˆ2+eps)
c1.PXnypy.distx (mbd.dsj3.xsx+mbd.dsj3.uc.src-mbd.dsj3.xdx-mbd.dsj3.uc.dest)
/c1.PXnypy.dist
c1.PXnypy.disty (mbd.dsj3.xsy+mbd.dsj3.vc.src-mbd.dsj3.xdy-mbd.dsj3.vc.dest)
/c1.PXnypy.dist
c1.PXnypy.distz (mbd.dsj3.xsz+mbd.dsj3.wc.src-mbd.dsj3.xdz-mbd.dsj3.wc.dest)
/c1.PXnypy.dist
c1.PXnypy.damp d(c1.PXnypy.dist,TIME)
c1.PXnypy.sw c1.PXnypy.dist¿l.c1.nypy
c1.PXnypy.f (k*(l.c1.nypy-c1.PXnypy.dist)
-c*(c1.PXnypy.damp¿0)*c1.PXnypy.damp)*c1.PXnypy.sw
c1.PXnypy.Ws c1.PXnypy.sw*.5*k*(l.c1.nypy-c1.PXnypy.dist)ˆ2
c1.PXnypy.fx c1.PXnypy.f*c1.PXnypy.distx
c1.PXnypy.fy c1.PXnypy.f*c1.PXnypy.disty
c1.PXnypy.fz c1.PXnypy.f*c1.PXnypy.distz
mbd.dsj4.xsx mbd.att24.xcx
mbd.dsj4.xsy mbd.att24.xcy
mbd.dsj4.xsz mbd.att24.xcz
mbd.dsj4.xdx mbd.att13.xcx
mbd.dsj4.xdy mbd.att13.xcy
mbd.dsj4.xdz mbd.att13.xcz
mbd.dsj4.uc.src mbd.att24.u
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mbd.dsj4.vc.src mbd.att24.v
mbd.dsj4.wc.src mbd.att24.w
mbd.dsj4.uc.dest mbd.att13.u
mbd.dsj4.vc.dest mbd.att13.v
mbd.dsj4.wc.dest mbd.att13.w
c1.PXpyny.dist sqrt((mbd.dsj4.xsx+mbd.dsj4.uc.src-mbd.dsj4.xdx-mbd.dsj4.uc.dest)ˆ2
+(mbd.dsj4.xsy+mbd.dsj4.vc.src-mbd.dsj4.xdy-mbd.dsj4.vc.dest)ˆ2
+(mbd.dsj4.xsz+mbd.dsj4.wc.src-mbd.dsj4.xdz-mbd.dsj4.wc.dest)ˆ2+eps)
c1.PXpyny.distx (mbd.dsj4.xsx+mbd.dsj4.uc.src-mbd.dsj4.xdx-mbd.dsj4.uc.dest)
/c1.PXpyny.dist
c1.PXpyny.disty (mbd.dsj4.xsy+mbd.dsj4.vc.src-mbd.dsj4.xdy-mbd.dsj4.vc.dest)
/c1.PXpyny.dist
c1.PXpyny.distz (mbd.dsj4.xsz+mbd.dsj4.wc.src-mbd.dsj4.xdz-mbd.dsj4.wc.dest)
/c1.PXpyny.dist
c1.PXpyny.damp d(c1.PXpyny.dist,TIME)
c1.PXpyny.sw c1.PXpyny.dist¿l.c1.pyny
c1.PXpyny.f (k*(l.c1.pyny-c1.PXpyny.dist)
-c*(c1.PXpyny.damp¿0)*c1.PXpyny.damp)*c1.PXpyny.sw
c1.PXpyny.Ws c1.PXpyny.sw*.5*k*(l.c1.pyny-c1.PXpyny.dist)ˆ2
c1.PXpyny.fx c1.PXpyny.f*c1.PXpyny.distx
c1.PXpyny.fy c1.PXpyny.f*c1.PXpyny.disty
c1.PXpyny.fz c1.PXpyny.f*c1.PXpyny.distz
mbd.dsj5.xsx mbd.att18.xcx
mbd.dsj5.xsy mbd.att18.xcy
mbd.dsj5.xsz mbd.att18.xcz
mbd.dsj5.xdx mbd.att1.xcx
mbd.dsj5.xdy mbd.att1.xcy
mbd.dsj5.xdz mbd.att1.xcz
mbd.dsj5.uc.src mbd.att18.u
mbd.dsj5.vc.src mbd.att18.v
mbd.dsj5.wc.src mbd.att18.w
mbd.dsj5.uc.dest mbd.att1.u
mbd.dsj5.vc.dest mbd.att1.v
mbd.dsj5.wc.dest mbd.att1.w
c1.nxpxPY.dist sqrt((mbd.dsj5.xsx+mbd.dsj5.uc.src-mbd.dsj5.xdx-mbd.dsj5.uc.dest)ˆ2
+(mbd.dsj5.xsy+mbd.dsj5.vc.src-mbd.dsj5.xdy-mbd.dsj5.vc.dest)ˆ2
+(mbd.dsj5.xsz+mbd.dsj5.wc.src-mbd.dsj5.xdz-mbd.dsj5.wc.dest)ˆ2+eps)
c1.nxpxPY.distx (mbd.dsj5.xsx+mbd.dsj5.uc.src-mbd.dsj5.xdx-mbd.dsj5.uc.dest)
/c1.nxpxPY.dist
c1.nxpxPY.disty (mbd.dsj5.xsy+mbd.dsj5.vc.src-mbd.dsj5.xdy-mbd.dsj5.vc.dest)
/c1.nxpxPY.dist
c1.nxpxPY.distz (mbd.dsj5.xsz+mbd.dsj5.wc.src-mbd.dsj5.xdz-mbd.dsj5.wc.dest)
/c1.nxpxPY.dist
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c1.nxpxPY.damp d(c1.nxpxPY.dist,TIME)
c1.nxpxPY.sw c1.nxpxPY.dist¿l.c1.py
c1.nxpxPY.f (k*(l.c1.py-c1.nxpxPY.dist)
-c*(c1.nxpxPY.damp¿0)*c1.nxpxPY.damp)*c1.nxpxPY.sw
c1.nxpxPY.Ws c1.nxpxPY.sw*.5*k*(l.c1.py-c1.nxpxPY.dist)ˆ2
c1.nxpxPY.fx c1.nxpxPY.f*c1.nxpxPY.distx
c1.nxpxPY.fy c1.nxpxPY.f*c1.nxpxPY.disty
c1.nxpxPY.fz c1.nxpxPY.f*c1.nxpxPY.distz
mbd.dsj6.xsx mbd.att6.xcx
mbd.dsj6.xsy mbd.att6.xcy
mbd.dsj6.xsz mbd.att6.xcz
mbd.dsj6.xdx mbd.att13.xcx
mbd.dsj6.xdy mbd.att13.xcy
mbd.dsj6.xdz mbd.att13.xcz
mbd.dsj6.uc.src mbd.att6.u
mbd.dsj6.vc.src mbd.att6.v
mbd.dsj6.wc.src mbd.att6.w
mbd.dsj6.uc.dest mbd.att13.u
mbd.dsj6.vc.dest mbd.att13.v
mbd.dsj6.wc.dest mbd.att13.w
c1.pxnxPY.dist sqrt((mbd.dsj6.xsx+mbd.dsj6.uc.src-mbd.dsj6.xdx-mbd.dsj6.uc.dest)ˆ2
+(mbd.dsj6.xsy+mbd.dsj6.vc.src-mbd.dsj6.xdy-mbd.dsj6.vc.dest)ˆ2
+(mbd.dsj6.xsz+mbd.dsj6.wc.src-mbd.dsj6.xdz-mbd.dsj6.wc.dest)ˆ2+eps)
c1.pxnxPY.distx (mbd.dsj6.xsx+mbd.dsj6.uc.src-mbd.dsj6.xdx-mbd.dsj6.uc.dest)
/c1.pxnxPY.dist
c1.pxnxPY.disty (mbd.dsj6.xsy+mbd.dsj6.vc.src-mbd.dsj6.xdy-mbd.dsj6.vc.dest)
/c1.pxnxPY.dist
c1.pxnxPY.distz (mbd.dsj6.xsz+mbd.dsj6.wc.src-mbd.dsj6.xdz-mbd.dsj6.wc.dest)
/c1.pxnxPY.dist
c1.pxnxPY.damp d(c1.pxnxPY.dist,TIME)
c1.pxnxPY.sw c1.pxnxPY.dist¿l.c1.py
c1.pxnxPY.f (k*(l.c1.py-c1.pxnxPY.dist)
-c*(c1.pxnxPY.damp¿0)*c1.pxnxPY.damp)*c1.pxnxPY.sw
c1.pxnxPY.Ws c1.pxnxPY.sw*.5*k*(l.c1.py-c1.pxnxPY.dist)ˆ2
c1.pxnxPY.fx c1.pxnxPY.f*c1.pxnxPY.distx
c1.pxnxPY.fy c1.pxnxPY.f*c1.pxnxPY.disty
c1.pxnxPY.fz c1.pxnxPY.f*c1.pxnxPY.distz
mbd.dsj7.xsx mbd.att24.xcx
mbd.dsj7.xsy mbd.att24.xcy
mbd.dsj7.xsz mbd.att24.xcz
mbd.dsj7.xdx mbd.att7.xcx
mbd.dsj7.xdy mbd.att7.xcy
mbd.dsj7.xdz mbd.att7.xcz
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mbd.dsj7.uc.src mbd.att24.u
mbd.dsj7.vc.src mbd.att24.v
mbd.dsj7.wc.src mbd.att24.w
mbd.dsj7.uc.dest mbd.att7.u
mbd.dsj7.vc.dest mbd.att7.v
mbd.dsj7.wc.dest mbd.att7.w
c1.nxpxNY.dist sqrt((mbd.dsj7.xsx+mbd.dsj7.uc.src-mbd.dsj7.xdx-mbd.dsj7.uc.dest)ˆ2
+(mbd.dsj7.xsy+mbd.dsj7.vc.src-mbd.dsj7.xdy-mbd.dsj7.vc.dest)ˆ2
+(mbd.dsj7.xsz+mbd.dsj7.wc.src-mbd.dsj7.xdz-mbd.dsj7.wc.dest)ˆ2+eps)
c1.nxpxNY.distx (mbd.dsj7.xsx+mbd.dsj7.uc.src-mbd.dsj7.xdx-mbd.dsj7.uc.dest)
/c1.nxpxNY.dist
c1.nxpxNY.disty (mbd.dsj7.xsy+mbd.dsj7.vc.src-mbd.dsj7.xdy-mbd.dsj7.vc.dest)
/c1.nxpxNY.dist
c1.nxpxNY.distz (mbd.dsj7.xsz+mbd.dsj7.wc.src-mbd.dsj7.xdz-mbd.dsj7.wc.dest)
/c1.nxpxNY.dist
c1.nxpxNY.damp d(c1.nxpxNY.dist,TIME)
c1.nxpxNY.sw c1.nxpxNY.dist¿l.c1.ny
c1.nxpxNY.f (k*(l.c1.ny-c1.nxpxNY.dist)
-c*(c1.nxpxNY.damp¿0)*c1.nxpxNY.damp)*c1.nxpxNY.sw
c1.nxpxNY.Ws c1.nxpxNY.sw*.5*k*(l.c1.ny-c1.nxpxNY.dist)ˆ2
c1.nxpxNY.fx c1.nxpxNY.f*c1.nxpxNY.distx
c1.nxpxNY.fy c1.nxpxNY.f*c1.nxpxNY.disty
c1.nxpxNY.fz c1.nxpxNY.f*c1.nxpxNY.distz
mbd.dsj8.xsx mbd.att12.xcx
mbd.dsj8.xsy mbd.att12.xcy
mbd.dsj8.xsz mbd.att12.xcz
mbd.dsj8.xdx mbd.att19.xcx
mbd.dsj8.xdy mbd.att19.xcy
mbd.dsj8.xdz mbd.att19.xcz
mbd.dsj8.uc.src mbd.att12.u
mbd.dsj8.vc.src mbd.att12.v
mbd.dsj8.wc.src mbd.att12.w
mbd.dsj8.uc.dest mbd.att19.u
mbd.dsj8.vc.dest mbd.att19.v
mbd.dsj8.wc.dest mbd.att19.w
c1.pxnxNY.dist sqrt((mbd.dsj8.xsx+mbd.dsj8.uc.src-mbd.dsj8.xdx-mbd.dsj8.uc.dest)ˆ2
+(mbd.dsj8.xsy+mbd.dsj8.vc.src-mbd.dsj8.xdy-mbd.dsj8.vc.dest)ˆ2
+(mbd.dsj8.xsz+mbd.dsj8.wc.src-mbd.dsj8.xdz-mbd.dsj8.wc.dest)ˆ2+eps)
c1.pxnxNY.distx (mbd.dsj8.xsx+mbd.dsj8.uc.src-mbd.dsj8.xdx-mbd.dsj8.uc.dest)
/c1.pxnxNY.dist
c1.pxnxNY.disty (mbd.dsj8.xsy+mbd.dsj8.vc.src-mbd.dsj8.xdy-mbd.dsj8.vc.dest)
/c1.pxnxNY.dist
c1.pxnxNY.distz (mbd.dsj8.xsz+mbd.dsj8.wc.src-mbd.dsj8.xdz-mbd.dsj8.wc.dest)
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/c1.pxnxNY.dist
c1.pxnxNY.damp d(c1.pxnxNY.dist,TIME)
c1.pxnxNY.sw c1.pxnxNY.dist¿l.c1.ny
c1.pxnxNY.f (k*(l.c1.ny-c1.pxnxNY.dist)
-c*(c1.pxnxNY.damp¿0)*c1.pxnxNY.damp)*c1.pxnxNY.sw
c1.pxnxNY.Ws c1.pxnxNY.sw*.5*k*(l.c1.ny-c1.pxnxNY.dist)ˆ2
c1.pxnxNY.fx c1.pxnxNY.f*c1.pxnxNY.distx
c1.pxnxNY.fy c1.pxnxNY.f*c1.pxnxNY.disty
c1.pxnxNY.fz c1.pxnxNY.f*c1.pxnxNY.distz
c1.tot.Ws c1.NXnypy.Ws+c1.NXpyny.Ws+c1.PXnypy.Ws+c1.PXpyny.Ws
+c1.nxpxPY.Ws+c1.pxnxPY.Ws+c1.nxpxNY.Ws+c1.pxnxNY.Ws
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the reflector, a method to simulate the structure’s deployment was developed using COMSOL. The simulation model is comprised of a locking hinge truss that
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sections and is meshed to a sufficient accuracy with second order elements. The geometry is modeled in the truss’s stowed configuration, with the connecting
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demonstrate the global motion of the deploying truss under differing conditions and to also showcase the capabilities of COMSOL’s implicit solver. It was
found through all of the simulation variations that the success of the truss’s deployment is largely dependent on the condition of the lower truss members as
well as the interaction between the spring-loaded hinges and tension cables. The results demonstrate how COMSOL can be used to aid in the advancement of
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